454 research outputs found

    On the Obstructions to non-Cliffordian Pin Structures

    Full text link
    We derive the topological obstructions to the existence of non-Cliffordian pin structures on four-dimensional spacetimes. We apply these obstructions to the study of non-Cliffordian pin-Lorentz cobordism. We note that our method of derivation applies equally well in any dimension and in any signature, and we present a general format for calculating obstructions in these situations. Finally, we interpret the breakdown of pin structure and discuss the relevance of this to aspects of physics.Comment: 31 pages, latex, published in Comm. Math. Phys. 164, No. 1, pages 65-87 (1994

    Virtual Black Holes

    Get PDF
    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2S^2\times S^2 and K3K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2S^2\times S^2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix $\$ that does not factorise into an SS matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ\theta angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.Comment: 24p, LaTeX, 3 postscript figures included with epsf sent in a seperate uuencoded fil

    Open Inflation, the Four Form and the Cosmological Constant

    Get PDF
    Fundamental theories of quantum gravity such as supergravity include a four form field strength which contributes to the cosmological constant. The inclusion of such a field into our theory of open inflation (hep-th/9802030) allows an anthropic solution to the cosmological constant problem in which the cosmological constant gives a small but non-negligible contribution to the density of today's universe. We include a discussion of the role of the singularity in our solution and a reply to Vilenkin's recent criticism (hep-th/9803084).Comment: 11 pages, RevTex file. Replaced version contains major corrections, including a crucial new surface term, and important additions. A connection to eleven dimensional supergravity is made. The anthropic solution of the cosmological constant problem now holds with a real four form in the Lorentzian region. The previously claimed solution to the empty universe problem is shown to be incorrect, but a new solution is suggeste

    Entropy in the RST Model

    Full text link
    The RST Model is given boundary term and Z-field so that it is well-posed and local. The Euclidean method is described for general theory and used to calculate the RST intrinsic entropy. The evolution of this entropy for the shockwave solutions is found and obeys a second law.Comment: 10 pages, minor revisions, published version in Late

    Classical and Thermodynamic Stability of Black Branes

    Get PDF
    It is argued that many non-extremal black branes exhibit a classical Gregory-Laflamme instability if, and only if, they are locally thermodynamically unstable. For some black branes, the Gregory-Laflamme instability must therefore disappear near extremality. For the black pp-branes of the type II supergravity theories, the Gregory-Laflamme instability disappears near extremality for p=1,2,4p=1,2,4 but persists all the way down to extremality for p=5,6p=5,6 (the black D3-brane is not covered by the analysis of this paper). This implies that the instability also vanishes for the near-extremal black M2 and M5-brane solutions.Comment: 21 pages, LaTeX. v2: Various points clarified, typos corrected and reference adde

    Why Does Inflation Start at the Top of the Hill?

    Full text link
    We show why the universe started in an unstable de Sitter state. The quantum origin of our universe implies one must take a `top down' approach to the problem of initial conditions in cosmology, in which the histories that contribute to the path integral, depend on the observable being measured. Using the no boundary proposal to specify the class of histories, we study the quantum cosmological origin of an inflationary universe in theories like trace anomaly driven inflation in which the effective potential has a local maximum. We find that an expanding universe is most likely to emerge in an unstable de Sitter state, by semiclassical tunneling via a Hawking-Moss instanton. Since the top down view is forced upon us by the quantum nature of the universe, we argue that the approach developed here should still apply when the framework of quantum cosmology will be based on M-Theory.Comment: 21 pages, 1 figur

    Gravitational multi-NUT solitons, Komar masses and charges

    Get PDF
    Generalising expressions given by Komar, we give precise definitions of gravitational mass and solitonic NUT charge and we apply these to the description of a class of Minkowski-signature multi-Taub-NUT solutions without rod singularities. A Wick rotation then yields the corresponding class of Euclidean-signature gravitational multi-instantons.Comment: Some references adde

    Thermodynamics of a Kerr Newman de Sitter Black Hole

    Get PDF
    We compute the conserved quantities of the four-dimensional Kerr-Newman-dS (KNdS) black hole through the use of the counterterm renormalization method, and obtain a generalized Smarr formula for the mass as a function of the entropy, the angular momentum and the electric charge. The first law of thermodynamics associated to the cosmological horizon of KNdS is also investigated. Using the minimal number of intrinsic boundary counterterms, we consider the quasilocal thermodynamics of asymptotic de Sitter Reissner-Nordstrom black hole, and find that the temperature is equal to the product of the surface gravity (divided by 2Ď€2\pi) and the Tolman redshift factor. We also perform a quasilocal stability analysis by computing the determinant of Hessian matrix of the energy with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles and obtain a complete set of phase diagrams. We then turn to the quasilocal thermodynamics of four-dimensional Kerr-Newman-de Sitter black hole for virtually all possible values of the mass, the rotation and the charge parameters that leave the quasilocal boundary inside the cosmological event horizon, and perform a quasilocal stability analysis of KNdS black hole.Comment: REVTEX4, 12 pages, 12 figures, references added and some points in Sec II have been clarified, version to appear in Can. J. Phy

    Black hole solutions with dilatonic hair in higher curvature gravity

    Full text link
    A new numerical integration method for examining a black hole structure was realized. Black hole solutions with dilatonic hair of 4D low energy effective SuperString Theory action with Gauss-Bonnet quadratic curvature contribution were studied, using this method, inside and outside the event horizon. Thermodynamical properties of this solution were also studied.Comment: 10 pages, 6 figures, RevTeX, figures in LaTeX or PostScript are avaible upon request via e-mail address: [email protected], Submitted to Phys.Rev.

    Open Inflation With Scalar-tensor Gravity

    Get PDF
    The open inflation model recently proposed by Hawking and Turok is investigated in scalar-tensor gravity context. If the dilaton-like field has no potential, the instanton of our model is singular but has a finite action. The Gibbons-Hawking surface term vanishes and hence, can not be used to make Ω0\Omega_0 nonzero. To obtain a successful open inflation one should introduce other matter fields or a potential for the dilaton-like fields.Comment: 10 pages.1 figure. Some comments and references are improved. to be published in PR
    • …
    corecore