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Abstract Generalising expressions given by Komar, we give precise definitions of
gravitational mass and solitonic NUT charge and we apply these to the description of a
class of Minkowski-signature multi-Taub–NUT solutions without rod singularities. A
Wick rotation then yields the corresponding class of Euclidean-signature gravitational
multi-instantons.
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1 Introduction

In many respects, the Taub–NUT solution [1] appears to be dual to the Schwarzschild
solution in a fashion similar to the way a magnetic monopole is the dual of an electric
charge in Maxwell theory. The Taub–NUT space–time admits closed time-like geo-
desics [2] and, moreover, its analytic extension beyond the horizon turns out to be non
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1368 G. Bossard et al.

Hausdorff [3]. The horizon covers an orbifold singularity which is homeomorphic to a
two-sphere, although the Riemann tensor is bounded in its vicinity. These pathologies
lead to the view that the Taub–NUT solution is not physical.

Nonetheless, despite the fact that no magnetic monopole has yet been found in
our universe, such magnetic dual solutions play an important rôle in quantum elec-
trodynamics and especially in its non-abelian generalisation, namely Yang–Mills
theory. Moreover, the stationary solutions of the Maxwell–Einstein equations admit a
non-linearly realised SU (2, 1) symmetry group [4] which generalises the Ehlers group
and which mixes together the electromagnetic and the gravity degrees of freedom. This
generalises to a large class of theories, and in particular to ones that can be embedded
into supergravity theories. Despite the fact that this has not been proven so far, these
symmetry groups are believed to act on the non-stationary solutions as well. The major
difficulty in formulating such symmetries comes from the fact that Einstein’s theory is
highly non-linear and consequently its dualities are poorly understood beyond the lin-
earised level. The aim of this letter is to understand more closely the duality relations
within Einstein theory by exhibiting their similarities with the example of Maxwell
theory, and more specifically the similarities between NUT sources and magnetic
monopoles.

While a magnetic charge can be expressed in terms of a current associated to a
vector field dual to the standard Maxwell potential, its expression as a function of
the standard vector potential corresponds to a topological invariant of the associated
fibre-bundle geometry. In this letter, we define the NUT charge, in a similar way, as
a topological invariant associated to time-like three-cycles. We also generalise the
Komar mass to the case where there is no space-like slice with compact boundary in
the asymptotic region. These definitions involve a fibre-bundle construction which is
very reminiscent of the one appearing in Maxwell theory. In this case the U (1) fibres
are orbits of the time-like isometry.

We exhibit the similarities between the Komar NUT charge and magnetic charge
through a consideration of explicit solutions involving several NUT sources. Indeed,
we will give an infinite set of new regular solutions of the Einstein equations with
an arbitrary odd number of NUT sources. We obtain these by acting with the U (1)
duality group for stationary solutions on multi-black hole solutions with both negative
and positive masses. We define a coordinate patch that permits us to avoid Dirac–
Misner string singularities. Then we show how one can avoid the conical singularities
usually appearing in multi-black hole solutions by choosing adjacent NUT charges
to be opposite in sign. Since both negative and positive NUT charge singularities are
covered by horizons, these solutions define space–times which have no more (albeit
also no less) pathology than the ordinary Taub–NUT space–time.

The resolution of the Dirac–Misner string singularities requires the quantisation of
NUT charge. The Chern class of an associated fibre-bundle geometry is understood
to count the relative number of fundamental NUT charges of a given spacetime. The
timelike three-cycle surrounding several NUT charges turn out to be diffeomorphic
to Lens spaces L(|N |, 1) ∼= S3/Z|N |, where N is the relative number of fundamental
NUT charges that lie inside the interior of the corresponding three-cycle.

We discuss in a final section the Euclidean analogues of these multi-NUT solutions
which are slight generalisations of the instantons described in [5]
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Gravitational multi-NUT solitons, Komar masses and charges 1369

2 Komar NUT charge

A. Komar defined the mass for asymptotically Minkowski solutions of the Einstein
equations through an integral over the boundary of an asymptotically space-like
hypersurface V in spacetime [6]. Given an asymptotically Killing time-like vector
κ = κµ∂µ, the metric permits one to define the 1-form g(κ) ≡ gµνκµdxν , and the
Komar mass is then given as a function of the 2-form K ≡ dg(κ) by1

m ≡ 1

8π

∫

∂V

�K (1)

where � is the Hodge star operator. Comparing then this formula to the ones defining
the electric and the magnetic charges

q ≡ 1

2π

∫

∂V

�F p ≡ 1

2π

∫

∂V

F (2)

it seems natural to define the dual mass as the integral

n ≡ 1

8π

∫

∂V

K . (3)

However this integral is trivially zero because of Stokes theorem, as also would naïvely
be the one defining magnetic charge. Nevertheless, not all asymptotically flat space–
times admit a well-defined asymptotically space-like hypersurface. This is the case
for instance for the Taub–NUT space–time, for which the r = const slices of any
space-like hypersurfaces are not closed manifolds [2].

Let M be an asymptotically flat space–time. Strictly speaking, we assume that M
admits a function r which goes to infinity at spatial infinity and which defines a proper
distance in this limit, gµν∂µr∂νr → 1, and we assume that all the components of the
Riemann tensor in any vierbein frame go to zero as O(r−3) as r → +∞. We consider
stationary solutions; κ is then a Killing vector and the second-order components of
the Einstein equations can be written as

d � K = 2 � dxµRµνκ
ν = 16πG � dxµ

(
Tµν − 1

2
gµνT

)
κν (4)

which is very similar to the Maxwell equation. We choose the function r to be
invariant under the action of the time-like isometry, and choose the squared norm

1 Komar proved in [7] that if κ is chosen to be orthogonal to a family of minimal hypersurfaces, then the
Komar mass will be positive if V is chosen to be one of these hypersurfaces. However, Misner then showed
in [8] that this prescription is either inconsistent or impossible to achieve in some relevant examples. Here
we will not insist on this orthogonality prescription and the Komar mass consequently will not be necessarily
positive.
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1370 G. Bossard et al.

of the time-like Killing vector gµνκµκν ≡ −H to tend to −1 + O(r−1) as r → +∞.
We assume that the action of the time-like isometry is free and proper on the domain of
M where the function H is positively defined. This implies that M admits an Abelian
principal bundle structure over a Riemannian 3-fold V on this domain.

If this principal bundle is trivial, it admits a global section s which defines an embed-
ding of V into a space-like hypersurface of M (outside the zeros of H ). Otherwise
it only admits a patch of local sections defined on each open set of an atlas of V ,
which we denote collectively by s as well. A natural generalisation of the Komar mass
formula thus consists in defining it as the integral of the pull back s∗ �K of the 2-form
�K over ∂V . In order for this integral not to depend on the local trivialisation, �K must
be horizontal and invariant in the asymptotic region. It is trivially invariant since it is
built from the metric and the Killing vector, and the horizontality condition is given
by asymptotic hypersurface orthogonality, i.e. iκ � K → 0 as r → +∞. Because
of equation (4), d iκ � K = 0 in the vacuum and if space–time is simply connected,
there exists a function B such that iκ � K = d B. The horizontality condition for �K
in the asymptotic region is then equivalent to the fact that B tends to zero as O(r−1)

as r → +∞. The 2-form K is also trivially invariant and its horizontality condition
iκK = d H → 0 is satisfied because the function H tends to unity as r → +∞.

We accordingly define the mass m and its dual, the NUT charge n, by the following
integrals

m ≡ 1

8π

∫

∂V

s∗ � K n ≡ 1

8π

∫

∂V

s∗K . (5)

By construction, the 1-form g(κ) is invariant under the action of the time-like
isometry, and since iκg(κ) = −H → −1 as r → +∞, it defines a connection on
the principal bundle in the asymptotic region. The NUT charge is proportional to the
Chern class of the principal bundle over ∂V , and is thus non-zero only in the case
where the latter is non-trivial. Real line bundles over a compact surface always have
a vanishing Chern class, and a non-zero NUT charge implies therefore that time-like
orbits are compact.

One defines electric and magnetic charges in the same way by requiring both the
Maxwell potential and its dual to be invariant under the covariant action of the time-like
isometry in the asymptotic region, i.e. iκ F ∼ iκ �F ∼ O(r−2). The whole construction
can be generalised to non-stationary space–times, as long as Lκgµν tends sufficiently
fast to zero as r → +∞.

Let us now express the mass and its dual in a more explicit way. We choose coor-
dinates for which κ = ∂t , in such a way that the metric is given as follows

ds2 = −H
(

dt + B̂i dxi
)2 + H−1γi j dxi dx j . (6)

The vacuum Einstein equations then give d iκ � K = 0 and

iκ � K = −H2√γ εi
jk∂ j B̂k dxi = dxi∂i B (7)
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Gravitational multi-NUT solitons, Komar masses and charges 1371

where Latin indices are raised and lowered with the three-dimensional metric γi j . The
asymptotic horizontality conditions for K and �K are satisfied if

H = 1 − 2m

r
+ O(r−2) B = −2n

r
+ O(r−2). (8)

Then �K and K have the following behaviour in the asymptotic region

� K ∼
√
γ

2
εi j

k H−1∂k Hdxi ∧ dx j K ∼ −∂i B̂ j dxi ∧ dx j . (9)

If we assume furthermore that γi j is asymptotically Euclidean, one may verify that
the parameters m and n appearing in (8) are truly the mass and NUT charges defined
by (5).

One obtains s∗K = 2n sin θ dθ ∧ dϕ in polar coordinates on ∂V ∼= S2. B̂i is thus
only globally defined up to a constant, and the time coordinate also is not globally
defined over the two-sphere. One defines t+ and t− on the north and the south pole of
the two-sphere respectively. These coordinates are related by

t+ = t− − 4nϕ. (10)

Since ϕ is a periodic coordinate of period 2π , the time coordinates t± must be periodic
of period 8πn0, such that N = n

n0
is an integer. The integer N parametrizes the Chern

class of the principal bundle over S2, and the r = const slices for r sufficiently large
are diffeomorphic to the Lens space S3/Z|N |.

The Lens spaces are usually studied as Riemannian 3-folds, but they also admit
a pseudo-Riemannian metric, as does any U (1) principal bundle over a Riemannian
manifold. If we define a connection ω on to the principal bundle, as well as the pull-
back of the metric γ on the base by the bundle projection π , then ω⊗ω+ π∗γ gives
a natural Riemannian metric on the principal bundle, and −ω ⊗ ω + π∗γ a natural
pseudo-Riemannian metric.

Ramaswamy and Sen obtained a similar result in [9], where they defined the NUT
charge as a dual of the Bondi mass instead of the Komar mass. The Bondi mass and its
dual are defined using integrals involving, respectively, the Weyl tensor and its Hodge
dual.

The U (1) principal bundles over S2 are classified by their first Chern class, which is
unity in the case of the Hopf fibration of S3. By analogy with the case of the Maxwell
theory for which the Chern class determines the relative number of fundamental Dirac
monopoles, we will wish to interpret this integer as the relative number of fundamental
NUT sources in General Relativity. This interpretation turns out to be right, as we shall
see in the following.

3 Multi-Taub–NUT solutions

We now want to consider axisymmetric stationary solutions of the Einstein equations
with several NUT sources on the axial symmetry axis. We use Weyl coordinates in
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1372 G. Bossard et al.

which

ds2 = H−1e2σ
(

dz2 + dρ2
)

+ ρ2 H−1dϕ2 − H(dt + B̂dϕ)2. (11)

For example, in the case of the Taub–NUT solution of mass m and NUT charge n, the
Weyl coordinates are related to the Schwarzschild ones by2

ρ =
√

r̃2 − 2mr̃ − n2 sin θ z = (r̃ − m) cos θ, (12)

in terms of which the metric is

ds2 =−H (dt±+2n(±1−cos θ)dϕ)2 + H−1dr̃2 +
(

r̃2 + n2
) (

dθ2 + sin2 θdϕ2
)

(13)

with

H = r̃2 − 2mr̃ − n2

r̃2 + n2 . (14)

In Weyl coordinates, Eq. (7) reduces to

ρ−1 H2∂ρ B̂ = −∂z B ρ−1 H2∂z B̂ = ∂ρB (15)

and B is the imaginary part of the so-called Ernst potential, E ≡ H + i B. This latter
satisfies the Ernst equation

(E + E∗) (
∂z

2 + ∂ρ
2 + 1

ρ
∂ρ

)
E = 2∂zE∂zE + 2∂ρE∂ρE . (16)

For static solutions, the Ernst potential is real and the Ernst equation reduces to the
linear differential equation

(
∂z

2 + ∂ρ
2 + 1

ρ
∂ρ

)
ln E = 0 . (17)

The product of several real Ernst potentials thus gives a new solution. This permits
one to obtain the Ernst potential of multi-black holes solutions as

E =
h∏

i=1

ri − ci

ri + ci
(18)

2 Note that the radius r that is commonly introduced in Weyl coordinates is not the Schwarzschild radius
r̃ , but is related to it by r = r̃ − m.
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where 2ri = ri + + ri − with

ri ± ≡
√
(z − zi ± ci )2 + ρ2 (19)

and where zi and ci define respectively the position and the (possibly negative) mass
of each of the h black holes. When all masses are positive, these solutions are always
known to suffer from conical singularities unless one considers an infinite chain of
black holes [10–12].

A nice way to interpret the NUT charge as a dual mass comes from the fact that the
stationary solutions of Einstein’s equations admit a nonlinearly realised U (1) Ehlers
symmetry [13] which rotates the mass into the NUT charge in the case of the Taub–
NUT solutions. This U (1) acts trivially on the conformal factor σ and modifies the
Ernst potential as follows

E(α) = cosα E − i sin α

cosα − i sin α E . (20)

Acting this way on the Ernst potential (18), one gets

E = cosα
∏
(ri − ci )− i sin α

∏
(ri + ci )

cosα
∏
(ri + ci )− i sin α

∏
(ri − ci )

(21)

where e2iαci = mi + ini . We then derive the potentials for the metric3

H =
∏
(ri

2 − ci
2)

cos2 α
∏
(ri + ci )2 + sin2 α

∏
(ri − ci )2

B̂ = b − 2
h∑

i=1

ni
z − zi

ri
(22)

where b is an undetermined integration constant coming from the duality relation
(15). Note that the potential B̂ is a sum of potentials for ordinary Taub–NUT solutions
individually centred at zi . There is one horizon on each segment ρ = 0, zi − |ci | ≤
z ≤ zi + |ci |. Let us consider that they are all separated, i.e. that

zi−1 + |ci−1| < zi − |ci |. (23)

Between each adjacent pair of horizons, there is a Dirac–Misner string singularity
related to the fact that the 1-form dϕ diverges on the symmetry axis ρ = 0. The
Dirac–Misner string singularities are located on h + 1 segments Di , on which ρ = 0
and zi−1 + |ci−1| ≤ z ≤ zi − |ci |, where we understand −∞ < z ≤ z1 − |c1|

3 To derive the formula for B̂ we observe that H−2d B = −2
∑ ni dri

ri
2−ci

2 , and we make use of the identities

ρ2

ri
2−ci

2 + (z−zi )
2

ri
2 = 1 and ri ± = ri ± ci

z−zi
ri

to show that

ρ ∂zri

ri
2 − ci

2 = −∂ρ z − zi

ri

ρ ∂ρri

ri
2 − ci

2 = ∂z
z − zi

ri
.
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and zh + |ch | ≤ z < +∞ for D1 and Dh+1 respectively. In order to avoid such a
singularity, the potential B̂ must vanish identically on each of these segments. On the
segment Di , r j = z − z j for j < i and r j = −z + z j for j ≥ i , so one has

B̂|Di = bi − 2
i−1∑
j=1

n j + 2
h∑

j=i

n j = 0. (24)

Exactly in the same way as for the ordinary Taub–NUT solution [2], in order to avoid
Dirac–Misner string singularities, one must define h+1 open sets Ui , such that ∪h+1

i=1 Ui

covers space–time outside the horizons. We define each Ui as the complement of the
domain ∪ j �=i D j in M . At the intersection between Ui and Ui+1, the corresponding
time coordinates are related by

ti+1 = ti − 4niϕ (25)

and B̂ is given by

B̂|Ui = 2
i−1∑
j=1

n j − 2
h∑

j=i

n j − 2
h∑

j=1

n j
z − z j

r j
(26)

on Ui , in such a way that dti + B̂|Ui dϕ is globally defined on M .
Since ϕ is a periodic coordinate, ϕ ≈ ϕ + 2π , consistency requires the time coor-

dinate also to be periodic, that is t j ≈ t j + 8πni for all ni . In order for the manifold
to be well defined, all the NUT charges ni must thus be integral multiples of a given
fundamental charge n0, so ti ≈ ti + 8πn0.

We thus conclude that, even on a purely classical level, the existence of more than
one NUT charge on a manifold implies the quantisation of these charges. In fact, this
quantisation already occurs in Maxwell theory if one considers that its solutions are
the connections of U (1) principal bundles over space–time for which the curvature
verifies the equation d � F = 0. Indeed, the global definition of the Maxwell con-
nection on the principal bundle similarly requires all magnetic charges to be integral
multiples of a given fundamental charge.

The one-form ω ≡ 1
4n0
(dti + B̂|Ui dϕ) defines a connection on the U (1) principal

bundle over V . For any two-cycle of V surrounding a subset I of the NUT charges,
one computes that associated Chern class to be

NI = 1

n0

∑
i∈I

ni . (27)

The time-like 3-folds that surround the NUT charges within I are thus diffeomorphic
to the quotient of S3 by Z|NI | acting as a discrete subgroup of U (1), yielding a Lens
space. We thus interpret the Chern class NI of a two-cycle as the relative number of
fundamental NUT charges inside its interior.
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Gravitational multi-NUT solitons, Komar masses and charges 1375

As for multi-black hole solutions, the multi-NUT solutions generically possess
conical singularities. In order to avoid such singularities, the following function must
go to unity on the symmetry axis

∂µX∂µX

4X
→ 1 (28)

where X is the squared norm of the axisymmetric Killing vector. In Weyl coordinates
this function behaves like e−2σ as ρ → 0. The condition (28) is thus equivalent to the
requirement that the function σ tend to zero in this limit. Since σ is invariant under
the duality transformation (11), one can simply compute it for the multi-black hole
solutions. One gets, as a direct generalisation of the case of two positive mass black
holes given in [14], that

2σ =
h∑

i=1

ln
ri

2 − ci
2

ri +ri −
+

∑
i< j

ln
E+−

i j E−+
i j

E−−
i j E++

i j

(29)

where

E±±
i j = ri ±r j ± + (z − zi ± ci )(z − z j ± c j )+ ρ2. (30)

On the segment Dk , the function σ is thus constant and is equal to

σ|Dk =
k−1∑
i=1

h∑
j=k

ln
(zi − z j )

2 − (ci + c j )
2

(zi − z j )2 − (ci − c j )2

=
k−1∑
i=1

h∑
j=k

sign (ci c j ) ln

(
1 − 4|ci |[c j |(

2|ci | + Li j
) (

2|c j | + Li j
)
)

(31)

where Li j ≡ |zi − z j | − |ci | − |c j | is the distance between the two horizons of the
black holes centred at z = zi and z = z j , respectively. Since we require the horizons
not to overlap, all the Li j are strictly positive and one sees that σ can only be zero on
each segment Dk if some of the masses ci are negative.

Our multi-NUT solution defines thus a perfectly smooth space–time outside the
horizons if and only if

k−1∏
i=1

h∏
j=k

(zi − z j )
2 − (ci + c j )

2

(zi − z j )2 − (ci − c j )2
= 1 (32)

for all k between 2 and h. These h − 1 equations determine the relative positions of
the NUT sources as functions of their charges.
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4 Some examples

Let us consider a simple class of examples with three NUT sources, with charges
n1 = n3 = pn0 and n2 = −qn0 for two integers p and q. We also fix z3 = −z2 = z0
and z1 = 0. The absence of a conical singularity requires that

(
z0

2 − (p − q)2n0
2
) (
(2z0)

2 − (2pn0)
2
)

(
z0

2 − (p + q)2n0
2
)
(2z0)2

= 1 . (33)

This equation can be solved for p > 4q, by

z0 = p − q√
1 − 4q

p

n0 (34)

and the horizons are disjoint for any value of p and q.
The asymptotic r = const slices are then diffeomorphic to a Lens space S3/ZN

with N ≡ 2p − q. The value of the Chern class in these examples is N = 2r + 7q for
strictly positive integers r and q.

Since 1
4n0

B̂dϕ defines the pullback of a U (1) connection on each Ui of V , we can
compute the Chern class of the two cycles in V from it. We define the partitions of
various two cycles over the atlas of V as depicted in the following figures
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The Chern class of the cycle Sα is given by

Nα = 1

8πn0

∫

Sα2

d B̂|U2 ∧ dϕ + 1

8πn0

∫

Sα1

d B̂|U1 ∧ dϕ

= 1

8πn0

∫

∂Sα2

(
B̂|U2 − B̂|U1

)
dϕ = p (35)

and one computes in the same way that Nβ = −q, Nγ = p − q and Nδ = 2p − q.

5 Gravitational instantons

We recall that the quantum mechanics of a particle in a Taub–NUT space–time requires
the quantisation of the product of its mass with the NUT charge of space–time [15],
exactly as in the case of a magnetic monopole. Moreover, the NUT charge as defined
in [16] for not necessarily stationary space–times is shown to be preserved by small
deformations of the solutions through the introduction of gravitational waves.

The Euclidean self-dual Taub–NUT solutions might play a rôle in quantum gravity
very similar to the one played by instantons in gauge theories [17]. The analogue of
the instanton number would then be given by the Chern class of the asymptotic Lens
space, in the sense that the action evaluated for such a solution is proportional to |N |.
The index of the Dirac operator is however given by the Pontryagin number.

The solitons we have described in this letter are the Minkowski analogues of the
instantons described in [5] with the slight generalisation of considering both positive
and negative mass. However, the singularities associated with negative masses are not
removed by the effects of the NUT charges in the Euclidean case.

One can Wick rotate the Minkowskian solitons to Euclidean-signature solutions
by choosing a complex pure imaginary parameter for the duality transformation (20).
Indeed, for the Riemannian metric in Weyl coordinates,

ds2 = H−1e2σ
(

dz2 + dρ2
)

+ ρ2 H−1dϕ2 + H(dψ + B̂dϕ)2 (36)

the Euclidean Ernst equation is

(E+ + E−)
(
∂z

2 + ∂ρ
2 + 1

ρ
∂ρ

)
E± = 2∂zE±∂zE± + 2∂ρE±∂ρE± (37)

where the real Ernst potentials are E± ≡ H ± B, with B derived from B̂ using Eq. (15).
For a static Ernst potential, i.e. one satisfying E+ = E−, the Euclidean Ernst equation
is identical to the Minkowski one, and the multi-black hole solutions are thus solu-
tions of the Euclidean theory as well. The Euclidean Ernst equation is the equation of
motion of an SL(2,R)/SO(1, 1) non-linear sigma model, and it is left invariant by
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1378 G. Bossard et al.

the SO(1, 1) Ehlers transformation

E±(α) = cosh α E± ∓ sinh α

cosh α ∓ sinh α E±
. (38)

Applying this transformation, we obtain the following potentials for the Riemannian
metric (36)4

H =
∏
(ri

2 − ci
2)

cosh2 α
∏
(ri + ci )2 − sinh2 α

∏
(ri − ci )2

B̂ = bi − 2
h∑

i=1

ni
z − zi

ri

(39)

where ri is defined as in the Minkowski case and the mass and the NUT charges are
given by mi ≡ cosh 2α ci and ni ≡ sinh 2α ci . The resolution of the Dirac–Misner
string singularities goes the same way. All the NUT charges are thus required to be
integral multiples of a fundamental NUT charge n0, and the imaginary time coordinate
ψ is again periodic, with period 8πn0.

However one can not get rid of the conical singularities in the Euclidean case without
introducing singularities associated with negative masses. The only regular instantons
left over are thus the single instanton with m = 5

4 |n| and the self-dual instantons for
which ci = 0 [5].

The (anti)self-dual gravitational instantons with mi = ±ni [18,19] can be obtained
by taking the limit ci → 0, α → ±∞ while holding cosh 2α ci fixed and equal to mi .
In this limit, the Ernst potentials behave as

E± = 1 − e±2α ∑ ci
ri

1 + e±2α
∑ ci

ri

+ O(ci
2) (40)

and one computes that the function ri becomes
√
ρ2 + (z − zi )2 and

H−1 = 1 + 2
h∑

i=1

mi

ri
. (41)

The Ernst potentials then verify E∓ = 1 for ni = ±mi respectively, and the Ernst
equation reduces to the linear differential equation

(
∂z

2 + ∂ρ
2 + 1

ρ
∂ρ

)
(E+ + E−)−1 = 0 . (42)

For (anti)self-dual instantons E∓ = const, σ = 0 and Eq. (32) turns out to be satisfied
independently of the position of the sources on the axis. However, the absence of
Euclidean NUT singularities nevertheless requires all masses to be equal to n0.

4 See Footnote 3.
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