515 research outputs found

    Extracellular Vesicles as Biological Shuttles for Targeted Therapies.

    Get PDF
    The development of effective nanosystems for drug delivery represents a key challenge for the improvement of most current anticancer therapies. Recent progress in the understanding of structure and function of extracellular vesicles (EVs)-specialized membrane-bound nanocarriers for intercellular communication-suggests that they might also serve as optimal delivery systems of therapeutics. In addition to carrying proteins, lipids, DNA and different forms of RNAs, EVs can be engineered to deliver specific bioactive molecules to target cells. Exploitation of their molecular composition and physical properties, together with improvement in bio-techniques to modify their content are critical issues to target them to specific cells/tissues/organs. Here, we will discuss the current developments in the field of animal and plant-derived EVs toward their potential use for delivery of therapeutic agents in different pathological conditions, with a special focus on cancer

    MiR-33a Controls hMSCS Osteoblast Commitment Modulating the Yap/Taz Expression Through EGFR Signaling Regulation

    Get PDF
    Mesenchymal stromal cells (hMSCs) display a pleiotropic function in bone regeneration. The signaling involved in osteoblast commitment is still not completely understood, and that determines the failure of current therapies being used. In our recent studies, we identified two miRNAs as regulators of hMSCs osteoblast differentiation driving hypoxia signaling and cytoskeletal reorganization. Other signalings involved in this process are epithelial to mesenchymal transition (EMT) and epidermal growth factor receptor (EGFR) signalings through the regulation of Yes-associated protein (YAP)/PDZ-binding motif (TAZ) expression. In the current study, we investigated the role of miR-33a family as a (i) modulator of YAP/TAZ expression and (ii) a regulator of EGFR signaling during osteoblast commitments. Starting from the observation on hMSCs and primary osteoblast cell lines (Nh-Ost) in which EMT genes and miR-33a displayed a specific expression, we performed a gain and loss of function study with miR-33a-5p and 3p on hMSCs cells and Nh-Ost. After 24 h of transfections, we evaluated the modulation of EMT and osteoblast genes expression by qRT-PCR, Western blot, and Osteoimage assays. Through bioinformatic analysis, we identified YAP as the putative target of miR-33a-3p. Its role was investigated by gain and loss of function studies with miR-33a-3p on hMSCs; qRT-PCR and Western blot analyses were also carried out. Finally, the possible role of EGFR signaling in YAP/TAZ modulation by miR-33a-3p expression was evaluated. Human MSCs were treated with EGF-2 and EGFR inhibitor for different time points, and qRT-PCR and Western blot analyses were performed. The above-mentioned methods revealed a balance between miR-33a-5p and miR-33a-3p expression during hMSCs osteoblast differentiation. The human MSCs phenotype was maintained by miR-33a-5p, while the maintenance of the osteoblast phenotype in the Nh-Ost cell model was permitted by miR-33a-3p expression, which regulated YAP/TAZ through the modulation of EGFR signaling. The inhibition of EGFR blocked the effects of miR-33a-3p on YAP/TAZ modulation, favoring the maintenance of hMSCs in a committed phenotype. A new possible personalized therapeutic approach to bone regeneration was discussed, which might be mediated by customizing delivery of miR-33a in simultaneously targeting EGFR and YAP signaling with combined use of drugs

    MOCVD-Fabricated TiO2 Thin Films: Influence of Growth Conditions on Fibroblast Cells Culture

    Get PDF
    TiO2 thin films with various morphologies were grown on Ti substrates by the LP-MOCVD technique (Low Pressure Chemical Vapour Deposition from Metal-Organic precursor), with titanium tetra-iso-propoxide as a precursor. All the films were prepared in the same conditions except the deposition time. They were characterized by X-ray diffraction, scanning electron microscopy, optical 15 interferometry, water contact angle measurements. MOCVD-fabricated TiO2 thin films are known to be adapted to cell culture for implant requirements. Human gingival fibroblasts were cultured on the various TiO2 deposits. Differences in cell viability (MTT tests) and cell spreading (qualitative assessment) were observed and related to film roughness, wettability and allotropic composition

    Extracellular vesicle microRNAs contribute to the osteogenic inhibition of mesenchymal stem cells in multiple myeloma

    Get PDF
    Osteolytic bone disease is the major complication associated with the progression of multiple myeloma (MM). Recently, extracellular vesicles (EVs) have emerged as mediators of MM-associated bone disease by inhibiting the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Here, we investigated a correlation between the EV-mediated osteogenic inhibition and MM vesicle content, focusing on miRNAs. By the use of a MicroRNA Card, we identified a pool of miRNAs, highly expressed in EVs, from MM cell line (MM1.S EVs), expression of which was confirmed in EVs from bone marrow (BM) plasma of patients affected by smoldering myeloma (SMM) and MM. Notably,we found that miR-129-5p, which targets different osteoblast (OBs) differentiation markers, is enriched in MM-EVs compared to SMM-EVs, thus suggesting a selective packaging correlated with pathological grade. We found that miR-129-5p can be transported to hMSCs by MM-EVs and, by the use of miRNA mimics, we investigated its role in recipient cells. Our data demonstrated that the increase of miR-129-5p levels in hMSCs under osteoblastic differentiation stimuli inhibited the expression of the transcription factor Sp1, previously described as a positive modulator of osteoblastic differentiation, and of its target the Alkaline phosphatase (ALPL), thus identifying miR-129-5p among the players of vesicle-mediated bone disease

    Anti-Oxidant Multi-Functionalized Materials: Strontium-Substituted Monetite and Brushite as Delivery Systems for Curcumin

    Get PDF
    Curcumin has numerous biological activities and pharmaceutical applications related to its ability to inhibit reactive oxygen species. Herein, strontium-substituted monetite (SrDCPA) and strontium-substituted brushite (SrDCPD) were synthesized and further functionalized with curcumin with the aim to develop materials that combine the anti-oxidant properties of the polyphenol, the beneficial role of strontium toward bone tissue, and the bioactivity of calcium phosphates. Adsorption from hydroalcoholic solution increases with time and curcumin concentration, up to about 5-6 wt%, without affecting the crystal structure, morphology, and mechanical response of the substrates. The multi-functionalized substrates exhibit a relevant radical scavenging activity and a sustained release in phosphate buffer. Cell viability, morphology, and expression of the most representative genes were tested for osteoclast seeded in direct contact with the materials and for osteoblast/osteoclast co-cultures. The materials at relatively low curcumin content (2-3 wt%) maintain inhibitory effects on osteoclasts and support the colonization and viability of osteoblasts. The expressions of Alkaline Phosphatase (ALPL), collagen type I alpha 1 chain (COL1A1), and osteocalcin (BGLAP) suggest that curcumin reduces the osteoblast differentiation state but yields encouraging osteoprotegerin/receptor activator for the NFkB factor ligand (OPG/RANKL) ratio

    Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models

    Get PDF
    Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases

    The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel

    Get PDF
    This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO2 by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5104 min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO2 exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method

    19.6 Novel Nano-Composite biomaterial for ostheocondral tissue engineering.

    Get PDF

    Sharing Circulating Micro-RNAs between Osteoporosis and Sarcopenia: A Systematic Review

    Get PDF
    Background: Osteosarcopenia, a combination of osteopenia/osteoporosis and sarcopenia,is a common condition among older adults. While numerous studies and meta-analyses have beenconducted on osteoporosis biomarkers, biomarker utility in osteosarcopenia still lacks evidence. Here,we carried out a systematic review to explore and analyze the potential clinical of circulating microR-NAs (miRs) shared between osteoporosis/osteopenia and sarcopenia. Methods: We performed asystematic review on PubMed, Scopus, and Embase for differentially expressed miRs (p-value < 0.05)in (i) osteoporosis and (ii) sarcopenia. Following screening for title and abstract and deduplication,83 studies on osteoporosis and 11 on sarcopenia were identified for full-text screening. Full-textscreening identified 54 studies on osteoporosis, 4 on sarcopenia, and 1 on both osteoporosis andsarcopenia. Results: A total of 69 miRs were identified for osteoporosis and 14 for sarcopenia. Therewere 9 shared miRs, with evidence of dysregulation (up- or down-regulation), in both osteoporo-sis and sarcopenia: miR-23a-3p, miR-29a, miR-93, miR-133a and b, miR-155, miR-206, miR-208,miR-222, and miR-328, with functions and targets implicated in the pathogenesis of osteosarcopenia.However, there was little agreement in the results across studies and insufficient data for miRsin sarcopenia, and only three miRs, miR-155, miR-206, and miR-328, showed the same directionof dysregulation (down-regulation) in both osteoporosis and sarcopenia. Additionally, for mostidentified miRs there has been no replication by more than one study, and this is particularly true forall miRs analyzed in sarcopenia. The study quality was typically rated intermediate/high risk of bias.The large heterogeneity of the studies made it impossible to perform a meta-analysis. Conclusions:The findings of this review are particularly novel, as miRs have not yet been explored in the context ofosteosarcopenia. The dysregulation of miRs identified in this review may provide important clues tobetter understand the pathogenesis of osteosarcopenia, while also laying the foundations for furtherstudies to lead to effective screening, monitoring, or treatment strategies (PDF) Sharing Circulating Micro-RNAs between Osteoporosis and Sarcopenia: A Systematic Review. Available from: https://www.researchgate.net/publication/368667300_Sharing_Circulating_Micro-RNAs_between_Osteoporosis_and_Sarcopenia_A_Systematic_Review [accessed Feb 26 2023]
    corecore