2,279 research outputs found

    Mechanisms producing fissionlike binary fragments in heavy collisions

    Full text link
    The mixing of the quasifission component to the fissionlike cross section causes ambiguity in the quantitative estimation of the complete fusion cross section from the observed angular and mass distributions of the binary products. We show that the partial cross section of quasifission component of binary fragments covers the whole range of the angular momentum values leading to capture. The calculated angular momentum distributions for the compound nucleus and dinuclear system going to quasifission may overlap: competition between complete fusion and quasifission takes place at all values of initial orbital angular momentum. Quasifission components formed at large angular momentum of the dinuclear system can show isotropic angular distribution and their mass distribution can be in mass symmetric region similar to the characteristics of fusion-fission components. As result the unintentional inclusion of the quasifission contribution into the fusion-fission fragment yields can lead to overestimation of the probability of the compound nucleus formation.Comment: 15 pages, 6 figures, International Conference on Nuclear Reactions on Nucleons and Nuclei, Messina, Italy, October 5-9, 200

    A phase-separation perspective on dynamic heterogeneities in glass-forming liquids

    Get PDF
    We study dynamic heterogeneities in a model glass-former whose overlap with a reference configuration is constrained to a fixed value. The system phase-separates into regions of small and large overlap, so that dynamical correlations remain strong even for asymptotic times. We calculate an appropriate thermodynamic potential and find evidence of a Maxwell's construction consistent with a spinodal decomposition of two phases. Our results suggest that dynamic heterogeneities are the expression of an ephemeral phase-separating regime ruled by a finite surface tension

    A novel bacterial l-arginine sensor controlling c-di-GMP levels in Pseudomonas aeruginosa

    Get PDF
    Nutrients such as amino acids play key roles in shaping the metabolism of microorganisms in natural environments and in host–pathogen interactions. Beyond taking part to cellular metabolism and to protein synthesis, amino acids are also signaling molecules able to influence group behavior in microorganisms, such as biofilm formation. This lifestyle switch involves complex metabolic reprogramming controlled by local variation of the second messenger 3′, 5′-cyclic diguanylic acid (c-di-GMP). The intracellular levels of this dinucleotide are finely tuned by the opposite activity of dedicated diguanylate cyclases (GGDEF signature) and phosphodiesterases (EAL and HD-GYP signatures), which are usually allosterically controlled by a plethora of environmental and metabolic clues. Among the genes putatively involved in controlling c-di-GMP levels in P. aeruginosa, we found that the multidomain transmembrane protein PA0575, bearing the tandem signature GGDEF-EAL, is an l-arginine sensor able to hydrolyse c-di-GMP. Here, we investigate the basis of arginine recognition by integrating bioinformatics, molecular biophysics and microbiology. Although the role of nutrients such as l-arginine in controlling the cellular fate in P. aeruginosa (including biofilm, pathogenicity and virulence) is already well established, we identified the first l-arginine sensor able to link environment sensing, c-di-GMP signaling and biofilm formation in this bacterium

    The in vitro addition of methotrexate and/or methylprednisolone determines peripheral reduction in Th17 and expansion of conventional Treg and of IL-10 producing Th17 lymphocytes in patients with early rheumatoid arthritis.

    Get PDF
    The aim of our study was to evaluate methotrexate (MTX) and methylprednisolone (MP) effect on peripheral Th17 and Treg subsets in patients with rheumatoid arthritis (RA). We enrolled 15 patients (10 early RA and 5 long-standing disease) with active RA and 10 age-matched healthy donors as controls. Frequencies of Th17 and Treg were quantified using flow cytometry before and after in vitro addition of MTX, MP or both drugs. Our results showed a reduction in the overall Th17 population followed by an increase in Th17 IL-10+ and Treg, after in vitro treatment of PBMCs with the drugs in patients with early RA. Long-standing disease patients showed a less evident increase in Treg cells and less enhancement of IL-10 Th17 cells. We suggest that the treatment with MTX and MP could ameliorate RA disease activity by normalizing the distribution/imbalance of Th17/Treg and indicate a new regulatory role of IL-17+ cells in RA patients. \ua9 2014, Springer-Verlag Berlin Heidelberg

    Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element

    Full text link
    The yields of evaporation residues, fusion-fission and quasifission fragments in the 48^{48}Ca+144,154^{144,154}Sm and 16^{16}O+186^{186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the 48^{48}Ca+154^{154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in 48^{48}Ca+154^{154}Sm at the large collision energies and the lack of quasifission fragments in the 48^{48}Ca+144^{144}Sm reaction are explained by the overlap in mass-angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element ZZ=120 (AA=302) show that the 54^{54}Cr+248^{248}Cm reaction is preferable in comparison with the 58^{58}Fe+244^{244}Pu and 64^{64}Ni+238^{238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.Comment: 27 pages, 12 figures, submitted to Phys. Rev.
    corecore