10 research outputs found

    Print‐Light‐Synthesis of Gold Thin Film Electrodes for Electrochemical Sensing

    Get PDF
    The one-step fabrication of gold films by inkjet printing of a gold precursor ink and its photochemical reduction by exposure to UV light is presented. Inkjet printing creates on a substrate with high control micrometer-thin reaction volumes in which upon direct high-intensity light irradiation, the gold precursor reduces to pure and well-adhered Au particles, while all other ink components escape in the gas phase, without the need for any further post-treatment. The Au precursor ink does neither contain stabilizing agents, such as polymers or surfactants, nor sacrificial compounds, such as photoinitiators, to initiate and accelerate the reduction. This economic and green process is known as Print-Light-Synthesis (PLS) and is herein used to create gold patterns of thin compact Au films and separated Au nanoparticles. Gold loadings are in the μg cm−2 range and precisely controlled, thanks to the inkjet printing parameters. The gold films are characterized by spectroscopic and electrochemical methods. Finally, the applicability of Au films as electrochemical sensors is demonstrated for the detection of 1,4-butanediol in comparison to a commercial screen-printed Au electrode. The PLS Au electrode shows a 20 times higher sensitivity and opens new possibilities for disposable electrode production

    Sviluppo di biosensori reagentless basati sull'enzima fosfatasi alcalina

    No full text
    Negli ultimi anni i biosensori enzimatici sono diventati sempre più popolari nel campo delle determinazioni rapide di analiti di interesse industriale ed ambientale. L’utilizzo di tali biosensori consente di evitare, o comunque limitare, l’impiego di metodi analitici basati su tecniche più complesse e dispendiose in termini economici e temporali. Un grande obbiettivo della ricerca negli ultimi anni è quello di costruire biosensori reagentless, ossia dispositivi pronti all’uso da parte degli analisti, indipendentemente dalla loro esperienza. In questo lavoro di tesi sono stati sviluppati dei biosensori amperometrici reagentless che sfruttano l’enzima fosfatasi alcalina (ALP), come elemento di riconoscimento biologico, ed un elettrodo screen-printed (SPE) commerciale, come trasduttore. Per gli elettrodi SPE commerciali sono stati testati modificanti a base di nanomateriali carboniosi e del polimero conduttore PEDOT:ClO4. Sono inoltre stati messi a punto diversi biosensori costruiti utilizzando sia l’enzima ALP immobilizzato che lo stesso enzima in soluzione. I test sono stati eseguiti utilizzando il substrato enzimatico “ascorbil-fosfato di sodio (AAP)” ed alcuni inibitori enzimatici. I dispositivi reagentless sono stati fabbricati mediante stampa 3D e sono stati realizzati appositamente per gli elettrodi SPE commerciali utilizzati. Tali dispositivi sono stati utilizzati per effettuare la determinazione dell’AAP in campo cosmetico e la determinazione dell’enzima ALP in campo alimentare

    Print-Light-Synthesis for Single-Step Metal Nanoparticle Synthesis and Patterned Electrode Production

    Get PDF
    The fabrication of thin-film electrodes, which contain metal nanoparticles and nanostructures for applications in electrochemical sensing as well as energy conversion and storage, is often based on multi-step procedures that include two main passages: (i) the synthesis and purification of nanomaterials and (ii) the fabrication of thin films by coating electrode supports with these nanomaterials. The patterning and miniaturization of thin film electrodes generally require masks or advanced patterning instrumentation. In recent years, various approaches have been presented to integrate the spatially resolved deposition of metal precursor solutions and the rapid conversion of the precursors into metal nanoparticles. To achieve the latter, high intensity light irradiation has, in particular, become suitable as it enables the photochemical, photocatalytical, and photothermal conversion of the precursors during or slightly after the precursor deposition. The conversion of the metal precursors directly on the target substrates can make the use of capping and stabilizing agents obsolete. This review focuses on hybrid platforms that comprise digital metal precursor ink printing and high intensity light irradiation for inducing metal precursor conversions into patterned metal and alloy nanoparticles. The combination of the two methods has recently been named Print-Light-Synthesis by a group of collaborators and is characterized by its sustainability in terms of low material consumption, low material waste, and reduced synthesis steps. It provides high control of precursor loading and light irradiation, both affecting and improving the fabrication of thin film electrodes

    ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection

    No full text
    Due to the growing presence of pesticides in the environment and in food, the concern of their impact on human health is increasing. Therefore, the development of fast and reliable detection methods is needed. Enzymatic inhibition-based biosensors represent a good alternative for replacing the more complicated and time-consuming traditional methods (chromatography, spectrophotometry, etc.). This paper describes the development of an electrochemical biosensor exploiting alkaline phosphatase as the biological recognition element and a chemically modified glassy carbon electrode as the transducer. The biosensor was prepared modifying the GCE surface by a mixture of Multi-Walled-Carbon-Nanotubes (MWCNTs) and Electrochemically-Reduced-Graphene-Oxide (ERGO) followed by the immobilization of the enzyme by cross-linking with bovine serum albumin and glutaraldehyde. The inhibition of the biosensor response caused by pesticides was established using 2-phospho-L-ascorbic acid as the enzymatic substrate, whose dephosphorylation reaction produces ascorbic acid (AA). The MWCNTs/ERGO mixture shows a synergic effect in terms of increased sensitivity and decreased overpotential for AA oxidation. The response of the biosensor to the herbicide 2,4-dichloro-phenoxy-acetic-acid was evaluated and resulted in the concentration range 0.04–24 nM, with a limit of the detection of 16 pM. The determination of other pesticides was also achieved. The re-usability of the electrode was demonstrated by performing a washing procedure

    ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection

    No full text
    Due to the growing presence of pesticides in the environment and in food, the concern of their impact on human health is increasing. Therefore, the development of fast and reliable detection methods is needed. Enzymatic inhibition-based biosensors represent a good alternative for replacing the more complicated and time-consuming traditional methods (chromatography, spectrophotometry, etc.). This paper describes the development of an electrochemical biosensor exploiting alkaline phosphatase as the biological recognition element and a chemically modified glassy carbon electrode as the transducer. The biosensor was prepared modifying the GCE surface by a mixture of Multi-Walled-Carbon-Nanotubes (MWCNTs) and Electrochemically-Reduced-Graphene-Oxide (ERGO) followed by the immobilization of the enzyme by cross-linking with bovine serum albumin and glutaraldehyde. The inhibition of the biosensor response caused by pesticides was established using 2-phospho-L-ascorbic acid as the enzymatic substrate, whose dephosphorylation reaction produces ascorbic acid (AA). The MWCNTs/ERGO mixture shows a synergic effect in terms of increased sensitivity and decreased overpotential for AA oxidation. The response of the biosensor to the herbicide 2,4-dichloro-phenoxy-acetic-acid was evaluated and resulted in the concentration range 0.04–24 nM, with a limit of the detection of 16 pM. The determination of other pesticides was also achieved. The re-usability of the electrode was demonstrated by performing a washing procedure

    LDH-Based Voltammetric Sensors

    No full text
    Layered double hydroxides (LDHs), also named hydrotalcite-like compounds, are anionic clays with a lamellar structure which have been extensively used in the last two decades as electrode modifiers for the design of electrochemical sensors. These materials can be classified into LDHs containing or not containing redox-active centers. In the former case, a transition metal cation undergoing a reversible redox reaction within a proper potential window is present in the layers, and, therefore, it can act as electron transfer mediator, and electrocatalyze the oxidation of an analyte for which the required overpotential is too high. In the latter case, a negatively charged species acting as a redox mediator can be introduced into the interlayer spaces after exchanging the anion coming from the synthesis, and, again, the material can display electrocatalytic properties. Alternatively, due to the large specific surface area of LDHs, molecules with electroactivity can be adsorbed on their surface. In this review, the most significant electroanalytical applications of LDHs as electrode modifiers for the development of voltammetric sensors are presented, grouping them based on the two types of materials

    Highly twisted carbazole-borane derivatives: B\u2013N stereodynamic analysis and consequences on their emission properties

    No full text
    The stereodynamic properties of amino bis-mesityl-boranes bearing carbazole and benzocarbazole as donor heterocycles have been investigated by dynamic NMR analysis and simulated by DFT calculations. The \u3c0-contribution to the B\u2013N bond has been estimated to be 24 kcal mol 121 when carbazole is the donor heterocycle, while a value of 21.7 kcal mol 121 has been found for the benzocarbazole series. Two rotational barriers were determined for the B\u2013N bond, the lower one (11.1\u201316.9 kcal mol 121) leading to conformational enantiomers, and the higher one (21.0\u201324.0 kcal mol 121) likely being responsible for the E-Z isomerization in compounds bearing different aryl rings bound to the boron atom. It has been shown that both kinds of dynamic rearrangements involve a correlated motion of all the three rings. The difference in the ground state geometries and the different \u3c0-contributions led to pronounced variations in the fluorescence spectra, due to different geometric rearrangements in the TICT excited state. Stokes shifts larger than 10\u2006000 cm 121 were observed in the carbazole series, with quantum yields up to 50%. It has been found that the \u3c0-contribution to the B\u2013N bond in the excited state is still significant, with B\u2013N isomerism likely not taking place on the ns scale

    Dynamic Positioning system of a vessel with conventional propulsion configuration: Modeling and simulation

    No full text
    A simulation model of the DP system for a conventional naval configuration is presented. A complete mathematical description of the dynamically positioned vessel is developed, including distinct models for low- and wave-frequency ship motions, slowly-varying wind and wave forces, and mechanical constraints on the actuators. A specific allocation logic is devised for such a configuration, by using a linear hydrodynamic model of the propeller-rudder interaction. An anti-windup control-loop correction is designed to improve the DP controller performance. Eventually, simulation results are described to illustrate the effectiveness of the DP system
    corecore