183 research outputs found

    Timing of major fracture care in polytrauma patients – an update on principles, parameters and strategies for 2020

    Full text link
    Objectives Sustained changes in resuscitation and transfusion management have been observed since the turn of the millennium, along with an ongoing discussion of surgical management strategies. The aims of this study are threefold: a) to evaluate the objective changes in resuscitation and mass transfusion protocols undertaken in major level I trauma centers; b) to summarize the improvements in diagnostic options for early risk profiling in multiply injured patients and c) to assess the improvements in surgical treatment for acute major fractures in the multiply injured patient. Methods I. A systematic review of the literature (comprehensive search of the MEDLINE, Embase, PubMed, and Cochrane Central Register of Controlled Trials databases) and a concomitant data base (from a single Level I center) analysis were performed. Two authors independently extracted data using a pre-designed form. A pooled analysis was performed to determine the changes in the management of polytraumatized patients after the change of the millennium. II. A data base from a level I trauma center was utilized to test any effects of treatment changes on outcome. Inclusion criteria: adult patients, ISS > 16, admission < less than 24 h post trauma. Exclusion: Oncological diseases, genetic disorders that affect the musculoskeletal system. Parameters evaluated were mortality, ICU stay, ICU complications (Sepsis, Pneumonia, Multiple organ failure). Results I. From the electronic databases, 5141 articles were deemed to be relevant. 169 articles met the inclusion criteria and a manual review of reference lists of key articles identified an additional 22 articles. II. Out of 3668 patients, 2694 (73.4%) were male, the mean ISS was 28.2 (SD 15.1), mean NISS was 37.2 points (SD 17.4 points) and the average length of stay was 17.0 days (SD 18.7 days) with a mean length of ICU stay of 8.2 days (SD 10.5 days), and a mean ventilation time of 5.1 days (SD 8.1 days). Both surgical management and nonsurgical strategies have changed over time. Damage control resuscitation, dynamic analyses of coagulopathy and lactate clearance proved to sharpen the view of the worsening trauma patient and facilitated the prevention of further complications. The subsequent surgical care has become safer and more balanced, avoiding overzealous initial surgeries, while performing early fixation, when patients are physiologically stable or rapidly improving. Severe chest trauma and soft tissue injuries require further evaluation. Conclusions Multiple changes in management (resuscitation, transfusion protocols and balanced surgical care) have taken place. Moreover, improvement in mortality rates and complications associated with several factors were also observed. These findings support the view that the management of polytrauma patients has been substantially improved over the past 3 decades

    Implementation of a standardized protocol to manage elderly patients with low energy pelvic fractures: can service improvement be expected?

    Get PDF
    Purpose: The incidence of low energy pelvic fractures (FPFs) in the elderly is increasing. Comorbidities, decreased bone-quality, problematic fracture fixation and poor compliance represent some of their specific difficulties. In the absence of uniform management, a standard operating procedure (SOP) was introduced to our unit, aiming to improve the quality of services provided to these patients. Methods: A cohort study was contacted to test the impact of (1) using a specific clinical algorithm and (2) using different antiosteoporotic drugs. Multivariate regression analysis was used to determine prognostic factors. Study endpoints were the time-to-healing, length-of-stay, return to pre-injury mobility, union status, mortality and complications. Results: A total of 132 elderly patients (≥65 years) admitted during the period 2012–2014 with FPFs were enrolled. High-energy fractures, acetabular fractures, associated trauma affecting mobility, pathological pelvic lesions and operated FPFs were used as exclusion criteria. The majority of included patients were females (108/132; 81.8%), and the mean age was 85.8 years (range 67–108). Use of antiosteoporotics was associated with a shorter time of healing (p = 0.036). Patients treated according to the algorithm showed a significant protection against malunion (p < 0.001). Also, adherence to the algorithm allowed more patients to return to their pre-injury mobility status (p = 0.039). Conclusions: The use of antiosteoporotic medication in elderly patients with fragility pelvic fractures was associated with faster healing, whilst the adherence to a structured clinical pathway led to less malunions and non-unions and return to pre-injury mobility state

    Patients Generally May Return to Driving 4 Weeks After Hip Arthroscopy and 6 Weeks After Knee Arthroscopy: A Systematic Review and Meta-analysis

    Get PDF
    Purpose: To consolidate the evidence from the available literature and undertake a meta-analysis to provide a reference for physicians to make evidence-based recommendations to their patients regarding the return to driving after hip or knee arthroscopic procedures. Methods: A systematic review was conducted using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The OVID, Embase, and Cochrane databases were searched through June 2020 for articles containing keywords and/or MeSH (Medical Subject Headings) terms “hip arthroscopy” and “knee arthroscopy” in conjunction with “total brake response time” or “reaction time” in the context of automobile driving. A title review and full article review were performed to assess quality and select relevant articles. A meta-analysis of qualifying articles was undertaken. Results: Eight studies met the inclusion criteria for meta-analysis of brake reaction time (BRT). Meta-analysis of all knee BRTs showed times slower than or equal to baseline BRTs through 5 weeks, with a trend of improving BRTs from 6 to 10 weeks (weeks 8 and 10 were significant, P < .05). Among all hip BRTs, week 2 showed times slower than baseline BRTs, but after week 4, a trend toward faster BRTs was observed through week 8 (week 8 was significant, P < .05). Conclusions: BRTs met baseline or control values and continued to improve after 6 weeks after knee arthroscopy and after 4 weeks after hip arthroscopy. On the basis of these results, it would be safe to recommend a return to driving at 6 weeks after knee arthroscopic procedures and 4 weeks after hip arthroscopic procedures. Clinical Relevance: These results can be used by surgeons to base their recommendations on to provide guidance for their patients on the resumption of driving. Although BRT is an important aspect of driving ability, there are additional factors that need to be taken into consideration when making these recommendations, including cessation of opioid analgesics, strength of the surgical limb, and range of motion

    The use of Reamer–irrigator–aspirator in the management of long bone osteomyelitis: an update

    Get PDF
    Purpose: Reamer–irrigator–aspirator (RIA) is an innovative device that its indications have recently been expanded to the management of long bone infections. Methods: In this narrative review, we summarise the most important studies in the field and we present the current open questions pertaining to the use of RIA in the management of osteomyelitis of long bones. Results: The relevant literature is sparse and low quality. Nevertheless, the use of RIA for infected cases has yielded promising outcomes in specialised centres. Technical aspects that merit special attention in osteomyelitis of long bones are its inapplicability in small diameter long bones, the inadequate debridement of wide metaphyseal areas and the potential bleeding sequelae. The use of RIA in open fracture management to reduce infection risk has not gained acceptance. The antibiotic impregnated nails and rods constitute a complimentary strategy for the management of infections. Conclusions: The use of RIA for the management of long bone infections is an innovative and promising strategy. High quality studies are needed to shed light in its efficacy compared to conventional methods of management of osteomyelitis of long bones

    Non-Hematopoietic Essential Functions of Bone Marrow Cells: A Review of Scientific and Clinical Literature and Rationale for Treating Bone Defects.

    Get PDF
    Hematopoiesis as the only essential function of bone marrow cells has been challenged for several decades through basic science (in vitro and in vivo) and clinical data. Such work has shed light on two other essential functions of bone marrow cells: osteopoiesis and angio-genesis/vasculogenesis. Clinical utility of autologous concentrated bone marrow aspirate (CBMA) has demonstrated both safety and efficacy in treating bone defects. Moreover, CBMA has been shown to be comparable to the gold standard of iliac crest bone graft (ICBG), or autograft, with regard to being osteogenic and osteoinductive. ICBG is not considered an advanced therapy medicinal product (ATMP), but CBMA may become regulated as an ATMP. The European Medicines Agency Committee for Advanced Therapies (EMA:CAT) has issued a reflection paper (20 June 2014) in which reversal of the 2013 ruling that CBMA is a non-ATMP has been proposed. We review bone marrow cell involvement in osteopoiesis and angiogenesis/vasculogenesis to examine EMA:CAT 2013 decision to use CBMA for treatment of osteonecrosis (e.g, of the femoral head) should be considered a non-ATMP. This paper is intended to provide discussion on the 20 June 2014 reflection paper by reviewing two non-hematopoietic essential functions of bone marrow cells. Additionally, we provide clinical and scientific rationale for treating osteonecrosis with CBMA

    Bone regeneration: current concepts and future directions

    Get PDF
    Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis

    Bone morphogenetic proteins − 7 and − 2 in the treatment of delayed osseous union secondary to bacterial osteitis in a rat model

    Get PDF
    Background: Bone infections due to trauma and subsequent delayed or impaired fracture healing represent a great challenge in orthopedics and trauma surgery. The prevalence of such bacterial infection-related types of delayed non-union is high in complex fractures, particularly in open fractures with additional extensive soft-tissue damage. The aim of this study was to establish a rat model of delayed osseous union secondary to bacterial osteitis and investigate the impact of rhBMP-7 and rhBMP-2 on fracture healing in the situation of an ongoing infection. Methods: After randomization to four groups 72 Sprague-Dawley rats underwent a transverse fracture of the midshaft tibia stabilized by intramedullary titanium K-wires. Three groups received an intramedullary inoculation with Staphylococcus aureus (103 colony-forming units) before stabilization and the group without bacteria inoculation served as healing control. After 5 weeks, a second surgery was performed with irrigation of the medullary canal and local rhBMP-7 and rhBMP-2 treatment whereas control group and infected control group received sterile saline. After further 5 weeks rats were sacrificed and underwent biomechanical testing to assess the mechanical stability of the fractured bone. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, and to quantify callus formation and the mineralized area of the callus. Results: Biomechanical testing showed a significantly higher fracture torque in the non-infected control group and the infected rhBMP-7- and rhBMP-2 group compared with the infected control group (p &lt; 0.001). RhBMP-7 and rhBMP-2 groups did not show statistically significant differences (p = 0.57). Histological findings supported improved bone-healing after rhBMP treatment but quantitative micro-CT and histomorphometric results still showed significantly more hypertrophic callus tissue in all three infected groups compared to the non-infected group. Results from a semiquantitative bone-healing-score revealed best bone-healing in the non-infected control group. The expected chronic infection was confirmed in all infected groups. Conclusions: In delayed bone healing secondary to infection rhBMP treatment promotes bone healing with no significant differences in the healing efficacy of rhBMP-2 and rhBMP-7 being noted. Further new therapeutic bone substitutes should be analyzed with the present rat model for delayed osseous union secondary to bacterial osteitis
    corecore