23 research outputs found

    On the derivation of SPH schemes for shocks through inhomogeneous media

    Get PDF
    Smoothed Particle Hydrodynamics (SPH) is typically used for the simulation of shock propagation through solid media, commonly observed during hypervelocity impacts. Although schemes for impacts into monolithic structures have been studied using SPH, problems occur when multimaterial structures are considered. This study begins from a variational framework and builds schemes for multiphase compressible problems, coming from different density estimates. Algorithmic details are discussed and results are compared upon three one-dimensional Riemann problems of known behavior

    Towards A Unified Solution Method For Fluid-Structure Interaction Problems: Progress And Challenges

    Get PDF
    The paper presents the progress in the development of a novel unified method for solving coupled fluid-structure interaction problems as well as the associated major challenges. The new approach is based on the fact that there are four fundamental equations in continuum mechanics: the continuity equation and the three momentum equations that describe Newton’s second law in three directions. These equations are valid for fluids and solids, the difference being in the constitutive relations that provide the internal stresses in the momentum equations: in solids the stress tensor is a function of the strain tensor while in fluids the viscous stress tensor depends on the rate of strain tensor. The equations are written in such a way that both media have the same unknown variables, namely the three velocity components and pressure. The same discretisation method (finite volume) is used to discretise the four partial differential equations and the same methodology to handle the pressure-velocity coupling. A common set of variables as well as a unified discretisation and solution method leads to a strong coupling between the two media and is very beneficial for the robustness of the algorithm. Significant challenges include the derivation of consistent boundary conditions for the pressure equation in boundaries with prescribed traction as well as the handling of discontinuity of pressure at the fluid-structure interface

    Linear stability analysis and application of a new solution method of the elastodynamic equations suitable for a unified fluid-structure-interaction approach

    No full text
    In the conventional approach for fluid-structure-interaction problems, the fluid and solid components are treated separately and information is exchanged across their interface. According to the conventional terminology, the current numerical methods can be grouped in two major categories: partitioned methods and monolithic methods. Both methods use separate sets of equations for fluid and solid that have different unknown variables. A unified solution method has been presented in the previous work of Giannopapa and Papadakis (2004, "A New Formulation for Solids Suitable for a Unified Solution Method for Fluid-Structure Interaction Problems," ASME PVP 2004, San Diego, CA, July, PVP Vol. 491-1, pp. 111-117), which is different from these methods. The new approach treats both fluid and solid as a single continuum; thus, the whole computational domain is treated as one entity discretized on a single grid. Its behavior is described by a single set of equations, which are solved fully implicitly. In this paper, the elastodynamic equations are reformulated so that they contain the same unknowns as the Navier-Stokes equations, namely, velocities and pressure. Two time marching and one spatial discretization scheme, widely used for fluid equations, are applied for the solution of the reformulated equations for solids. Using linear stability analysis, the accuracy and dissipation characteristics of the resulting difference equations are examined. The aforementioned schemes are applied to a transient structural problem (beam bending) and the results compare favorably with available analytic solutions and are consistent with the conclusions of the stability analysis. A parametric investigation using different meshes, time steps, and beam dimensions is also presented. For all cases examined, the numerical solution was stable and robust and therefore is suitable for the next stage of application to full fluid-structure-interaction problem

    Modeling the Blow-Blow Forming Process in Glass Container Manufacturing: A Comparison Between Computations and Experiments

    No full text
    The blow-blow forming process is a widely used technique in glass container manufacturing (e.g., production of glass bottles and jar

    Space strategy and governance of ESA small member states

    No full text
    The European Space Agency (ESA) has twenty-two Member States with a variety of governance structures and strategic priorities regarding their space activities. The objective of this paper is to provide an up-to date overview and a holistic assessment of the national space governance structures and strategic priorities of the eleven smaller Member States (based on annual ESA contributions). A link is made between the governance structure and the main strategic objectives. The specific needs and interests of small and new Member States in the frame of European Space Integration are addressed. The first part of the paper focuses on the national space governance structures in the eleven smaller ESA Member States. The governance models of these Member States are identified including the responsible ministries and the entities entrusted with the implementation of space strategy/policy and programmes of the country. The second part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in the eleven smaller ESA Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators for space investments. In a third and final part, attention is given to the specific needs and interests of the smaller Member States in the frame of European space integration. ESA instruments are tailored to facilitate the needs and interests of the eleven smaller and/or new Member States. © 201

    On the derivation of SPH schemes for shocks through inhomogeneous media

    No full text
    Smoothed Particle Hydrodynamics (SPH) is typically used for the simulation of shock propagation through solid media, commonly observed during hypervelocity impacts. Although schemes for impacts into monolithic structures have been studied using SPH, problems occur when multimaterial structures are considered. This study begins from a variational framework and builds schemes for multiphase compressible problems, coming from different density estimates. Algorithmic details are discussed and results are compared upon three one-dimensional Riemann problems of known behavior
    corecore