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ABSTRACT 
The paper presents the progress in the development of a novel 
unified method for solving coupled fluid-structure interaction 
problems as well as the associated major challenges.  The new 
approach is based on the fact that there are four fundamental 
equations in continuum mechanics: the continuity equation and 
the three momentum equations that describe Newton’s second 
law in three directions. These equations are valid for fluids and 
solids, the difference being in the constitutive relations that 
provide the internal stresses in the momentum equations: in 
solids the stress tensor is a function of the strain tensor while in 
fluids the viscous stress tensor depends on the rate of strain 
tensor.  The equations are written in such a way that both media 
have the same unknown variables, namely the three velocity 
components and pressure. The same discretisation method 
(finite volume) is used to discretise the four partial differential 
equations and the same methodology to handle the pressure-
velocity coupling. A common set of variables as well as a 
unified discretisation and solution method leads to a strong 
coupling between the two media and is very beneficial for the 
robustness of the algorithm. Significant challenges include the 
derivation of consistent boundary conditions for the pressure 
equation in boundaries with prescribed traction as well as the 
handling of discontinuity of pressure at the fluid-structure 
interface.    

 
INTRODUCTION 
Fluid-structure interaction (FSI) occurs in many areas of 
engineering (aerospace, civil or mechanical) as well as other 
scientific disciplines including medicine, biomechanics etc.   
FSI analysis becomes crucial when the deformation of a fluid 
boundary, for example a vessel, can not be neglected. During 

this interaction, the pressure and the viscous stresses of the 
fluid act on the solid boundary and lead to structural 
deformations, which in turn affect the fluid flow and 
consequently the velocities, pressure and viscous stresses of the 
fluid. Thus the response of the system can only be determined 
if the coupled problem is solved. In the case of liquids, which 
are almost incompressible, even a small structural deformation 
can have a significant effect. For example, the cross sectional 
area of a typical plastic pipeline may expand by, say, 0.1% 
during a surge event but it is this expansion that causes the 
pressure surge to travel three times slower than in a perfectly 
rigid pipe. In the case of blood flow in arteries, which are 
extremely flexible, the wave speed is 200 times slower than in 
an equivalent rigid tube.  
 
In the conventional approach for simulating fluid-structure 
interaction problems, the fluid and solid components are treated 
separately and information is exchanged at their interface. The 
solution of the set of equations for solids provides the three 
node displacements and the solution of equations for fluids 
provides the three velocity components and pressure. In this 
approach, within one time step, the fluid equations are solved 
and the pressure and viscous stresses become the boundary 
conditions for the solid equations. These are then solved and 
from the calculated displacements a new computational domain 
is obtained in which the fluid equations are solved again. This 
process is repeated until both sets of equations converge to 
within a prescribed tolerance. Only then is the procedure 
advanced to the next time step. This is the fundamental idea of 
the monolithic methods.   

Different discretisation methods are traditionally used for the 
solution of the two sets of equations. For structures, the finite 
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element method is very well established, has sound 
mathematical formulation and has been used very successfully 
for decades [1,2]. On the other hand, the finite volume 
discretisation method for the fluids equations is still the most 
widely used method in the CFD community [3]. The exchange 
of information between the two different solution methods that 
solve for different variables with different discretisation 
methods is not a trivial task. It has also known drawbacks such 
as high computational cost and potential numerical instability, 
especially if the structural displacements are not small. An 
additional drawback is that one has to maintain two solution 
algorithms and an interface between them.  

Against this background, the main objective of the paper is to 
present the development of a novel, unified formulation for the 
numerical modelling of coupled fluid-structure interaction 
problems. In order to derive a unified formulation, two issues 
have to be addressed carefully: first the two sets of equations 
for fluids and structures should be cast in the same form and 
second a common discretisation and solution method must be 
used.  These two issues are dealt with in the following sections. 
Challenges that were encountered during the development of 
the method will be also highlighted and discussed.   
 

 
MATHEMATICAL FORMULATION 
It is well known that there are four fundamental equations in 
continuum mechanics: the continuity equation and the three 
momentum equations that describe Newton’s second law in 
three directions [4,5]. These equations are shown below: 
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As it can be seen, these four equations are expressed in terms 
of velocities and are valid for both fluids and solids. The 
difference lies in the constitutive relation that provides the 
stresses (σ): in solids the stress tensor is a function of the strain 
tensor while in fluids the viscous stress tensor depends on the 
rate of strain tensor. More specifically, for a linear elastic (or 
Hookean) solid σ is given by: 

 
Itr )(2 ελµεσ +=    (3) 

 
where ε is the strain tensor defined by  
 

)(21 TDD ∇+∇=ε     (4) 
 

and D  is the displacement.  
 

Substituting equation (4) into (3), the stress tensor can be 
written in terms of displacement as: 
 

I)D(tr)D(D T ∇+∇+∇= λµµσ    (5) 
 
For a linear viscous (or Newtonian fluid) σ is given by: 
 

pIdev −εη=σ )(2 &     (6) 
 

where ε&  is the strain rate tensor and dev(.) denotes the 
deviatoric part of a tensor. 
 
Since equations (1) and (2) that describe the fundamental 
physical laws are written in terms of velocities, it is reasonable 
to use velocities as unknown variables for both solids and 
fluids.  For fluids, the primitive variable approach (i.e. 
velocity-pressure formulation) is now almost universally used. 
So the equations for the solid medium have to be reformulated 
in such a way as to contain the same variables. The way that 
this is achieved is explained in the next section. 

Velocity-pressure formulation for solids 
Velocity and displacement are linked with the following 

equation:  
 

dt
DdU =      (7) 

 
and therefore the displacement components can be obtained by 
integrating equation (7). In the present paper the trapezoidal 
rule is used (see Figure 1): 
  

[ ontt
t UU

2
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0
]rrrrr
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+ ∆

Σ
∆    (8) 

 
where the superscripts  (n) and (o) denote the new and old time 
step respectively.  
 

 
Figure 1: Integration of velocity 

Substituting equation (8) into (5) and the result in (2) a 
velocity-based formulation for the momentum equation is 
obtained: 
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where the tensor +Σ

r  contains the contribution of the ‘old’ time 
instant. Note that in order to derive this equation, it was 
assumed that the convection term in equation (2) is negligible 
because of small deformations.  
 
The (hydrostatic) pressure p in solids is defined as 

)(tr
3
1p σ−=  where σ is the stress tensor and tr(.) is the trace 

operator [1]. It can be seen that equation (9) does not contain 
pressure. In fact, the solution of (9) can provide the velocities, 
from which the displacements can be obtained from equation 
(8) and the pressure can be evaluated from: 
 

 )(trKKp v εε ⋅−=⋅−=    (10) 
 

where K is the bulk modulus ( µλ
3
2K += ) and vε  is the 

dilatation. However, this method of evaluating pressure does 
not work for incompressible solids simply because the bulk 
modulus tends to infinity, the dilatation to zero but their 
product (i.e. pressure) is finite. In finite element formulation, 
this creates the node-locking problem [1], which is resolved by 
treating pressure as a separate unknown variable. It is also 
possible to treat pressure as unknown even for compressible 
solids [1, 2]. This leads to a formulation that is valid for both 
compressible and incompressible behavior and is the one 
adopted in the present work.    
 
The stress tensor σ is split into the hydrostatic and deviatoric 
part as follows: 

pIdev −= )(σσ     (11) 
 

This equation in combination with (5) and (8) leads to the 
following momentum equation that contains velocity and 
pressure as independent variables: 

pdev
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The additional equation from which pressure is obtained is the 
continuity equation. This equation contains density and 
velocity but it can be converted to an equation for pressure by 
noting that the density and pressure are linked with the 
barotropic relation:  
 

Kp
ρ

=
∂
ρ∂       (13) 

 
where K is the bulk modulus. For small variations in pressure 
about a reference pressure p0, equation (13) can be linearised 
as: 
 

[ ]Kpp /)(1 00 −+≈ ρρ     (14) 
 

For the special case of incompressible solid, the density of the 
solid is constant and the first term on the left hand side of 
equation (1) is zero. For this case, the continuity equation 
contains only velocities. In fact, the pressure must be calculated 
in such a way as to yield a displacement (and therefore a 
velocity) field with zero divergence. This is exactly the role of 
pressure for incompressible fluids as well.  
 

DISCRETISATION METHOD 
Having decided on the form of the equations as well as the 
unknown variables, the second issue is now addressed, i.e. the 
selection of a common discretisation and solution method.   

As mentioned earlier, the finite element method dominates the 
area of structural mechanics. The method is based on the 
variational principle, uses predefined shape functions 
depending on the topology of the element and can be easily 
extended to higher order discretisation. For the solution of a 
partial differential equation, the finite element method produces 
large block matrices and relies on direct system solvers. The 
finite volume method on the other hand is based on the integral 
form of partial differential equations, is usually second order 
accurate in space and time and uses segregated solution 
procedures i.e. the equations are solved sequentially, one after 
the other, until convergence of the whole system is achieved.  

In the finite volume method, the cross-component coupling 
terms are treated explicitly.  Thus the choice of a direct solver 
over a segregated solver for a linear elastic problem lies mainly 
in the trade-off between the high expense of the former 
approach for large matrices and the cheaper iterative solvers 
with the necessary iteration over the explicit cross-component 
coupling for the latter.  

The finite volume method is inherently good at treating the 
complicated, coupled, non-linear partial differential equations 
that describe the motion of fluid flows. In recent years, 
calculations using several million cells are regularly reported.  
In order to keep the computational time within acceptable 
limits, remarkable improvements in the performance of the 
method have been made. For example, modern finite volume 
solvers are fully parallelised and can use massively parallel 
computers with thousand CPUs. In the present work, the finite 
volume method was used to discretise all equations.  
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The momentum equation in a semidiscretised form can be 
written as: 

 
pUHU PP ∇−= )(α     (15) 

 
where H(U) contains the contributions of the surrounding 
nodes, previous time step as well as all other source terms 
except pressure. Substituting equations (15) and (14) into the 
continuity equation (1) and setting ψ=ρ0/K, a new PDE for 
pressure can be obtained: 
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In order to ensure that the velocity field satisfies the continuity 
equation, the PISO algorithm was adopted [6]. The PISO 
algorithm is most suitable for transient problems and can be 
used for compressible as well incompressible flows in an 
iterative manner. This solver has been widely used in fluids, but 
it can now be used for solids as well since we have the same 
pressure-velocity formulation. For the evaluation of velocities 
at the faces of the control volumes, the Rhie and Chow 
interpolation method is employed [12]. 
 
For the discretisation of the spatial terms, second order accurate 
central approximations are used. For the time marching, the 
first order accurate Euler method as well as a three-level 
scheme has been employed. A linear stability analysis of the 
diffusion and dispersion characteristics of these discretisation 
schemes when applied to the one dimensional wave equation 
can be found in [9]. Comparative results between these two 
time marching schemes are provided in the results section.  
 
Boundary conditions 
The implementation of the boundary conditions for fluids is 
well known. For solids there are two types of boundary 
conditions: prescribed displacement or traction. Care should be 
taken in the consistent implementation of these conditions for 
the reformulated solids equations, especially for the pressure 
equation as explained below. 

 
The first type (prescribed displacement) results in Dirichlet 
condition for velocity. As for pressure, there is no need for a 
boundary condition, as the value of pressure at the boundary 
does not enter into the discretised continuity equation when the 
boundary velocity is prescribed.   

 
For the second type (prescribed traction), the boundary 
condition for the momentum equation is obtained by applying 
force balance at the boundary. In other words, when the 
momentum equation is integrated into a control volume and the 

Gauss divergence theorem is used to convert the volume 
integral to a surface one, the term that involves the boundary 
face is equal to the force acting on this face. 

 
For the pressure equation, the boundary condition for 
prescribed traction is more complicated. In the finite element 
approach, when the mixed displacement-pressure formulation 
is used to deal with incompressible solids, both the 
displacement and the pressure degrees of freedom are 
unknowns in a large system whose diagonal components 
corresponding to pressure are zero. The solution of the 
equations of the complete assemblage of elements needs special 
considerations to avoid encountering a zero pivot element [1]. 
Using this approach, no special boundary conditions are needed 
for pressure. In fact the prescribed displacements and tractions 
at the boundaries are sufficient to allow the complete 
determination of displacement and pressure at the interior of 
the domain. 

 
However, in fluid dynamics the segregated solution approach is 
usually employed i.e. the equations are solved sequentially one 
after the other and outer iterations are performed to ensure the 
convergence of the whole system as already mentioned. Since a 
unified solution method is sought, the same approach should be 
used for solids as well and therefore pressure must be obtained 
from the solution of its own separate equation (16). But this 
generates the problem of boundary conditions for this equation.  
 
An example will be used to illustrate the difficulty of the 
problem. Let’s consider a circular cylinder subjected to the 
action of internal gas pressure pfi. The internal radius of the 
cylinder is ri and its thickness is h, as shown in figure 2. 
Assume for simplicity that the gas inside the cylinder is at rest 
so only the pressure force is acting on the internal cylinder 
wall. The cylinder has its axial end faces fixed i.e. the problem 
is plain strain. For this case, the analytic solution for the stress 
components is [4]:  

 

ri

h

pfi

psi

ri

h

pfi

psi

 
Figure 2: Circular cylinder under internal pressure. 
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In order to obtain this analytic solution the following boundary 
conditions were used at r=ri: 
 

0)hr(
p)r(

irr

fiirr

=+

−=

σ

σ      (18) 

 
i.e. the radial stress at the flow-structure interface is determined 
by the gas pressure. The definition of pressure for solids 

)(
3
1p zzrr σσσ θθ ++−=  can now be used to determine its 

value at the interface, psi (see figure 2). It can be shown easily 
that the solid and fluid pressures are not continuous at the 
interface. In fact, while the radial component of the stress rrσ  is 
compressive and varies from 0 to pfi, the circumferential stress 

θθσ  is tensile and can be many times larger than pfi for thin 
tubes.  
 
Returning now to the problem of pressure boundary condition, 
it can be seen that the solid pressure at the interface is 
unknown. By definition, it depends on the normal as well as the 
tangential stresses at the boundary and the specification of an 
appropriate boundary condition is a major challenge. 
 
It must be noted at this point that this is the first time a pressure 
equation is employed for solids and therefore there is no 
information available in the open literature. However, the 
problem of consistent boundary conditions for pressure has 
received considerable attention in fluid mechanics. In [7] a 
carefully derived boundary condition for pressure is obtained. 
A similar approach is followed in the present work i.e. the 
(vector) momentum equation is projected to the unit vector 
normal to the traction boundary and an expression for the 
pressure normal gradient is obtained that is used as boundary 
condition for the pressure equation. The analytic equations are 
provided in [10]. Through the cross-component coupling, the 
momentum equations contain implicit information on the stress 
distribution in the boundary normal as well as the tangential 
directions and this information is retained in the expression of 
the pressure boundary condition.  To the best of the authors’ 

knowledge, this is the first time that this type of boundary 
condition is used in solid mechanics. 
 

DESCRIPTION OF TEST CASE 
The aforementioned methodology and boundary conditions are 
validated against a transient beam-bending problem. This case 
comprises both normal as well shear stresses. Figure 3 shows a 
schematic representation of the case considered.  

 
The cantilevered beam is deflected from the horizontal position 
by applying at the right end a shear stress  and is 
then released. The upper and lower surfaces of the beam are 
free traction boundaries. The beam specifications are shown in 
Table 1.  

Pa106=τ

 

 
Figure 3: Two dimensional beam. 

 
 

Property Value 
Modulus (Ε) 4x109 Pa 
Poisson ratio (ν) 0.3 
Density (ρ) 1450 Kg/m3

Length (L) 20m 
Height (h) 5m 
Depth (w) 1m 

Table 1: Material properties and dimensions of the 
beam. 

 
A two-dimentional analytical solution for the steady state of the 
maximum end displacement at x=0 is given by [8]: 
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In order to calculate the main frequency of oscillation of the 
beam, a one-dimensional approximation is used for which an 
analytical solution is available. Thus, the 1D solution is used 
only as a rough reference guide to validate the computational 
results. The fundamental eigenfrequency of the undamped 
oscillation is: 
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2
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For the present case, the end displacement is δ = 0.340 m, the 
oscillation frequency is f = ω/2π = 3.35 Hz and the 
propagation of the stress wave through the beam is 

sec/1660mEc == ρ . 

RESULTS AND DISCUSSION 
The time integration scheme used for equation (12) was first-
order Euler implicit. A 40x10 mesh was used with a time step 
∆t=10-4s corresponding to Courant number Co=0.33. 
Convergence was achieved using two PISO loops and four 
external pressure-velocity loops for each time step. The 
solution gives a sinusoidal oscillation of the beam about the 
mean static deflection.  

 

 
Figure 4: Comparison of end displacement obtained 
with the standard stress analysis and the velocity-
pressure formulation (Co=0.33). 

 
The beam oscillates with a frequency of 3.32Hz and with 

maximum and mean deflections of 0.62m and 0.31m, 
respectively. The calculated values are quite close to the values 
from the analytical solution, which predicts a maximum 
deflection of 0.68m and an oscillation frequency of 3.35Hz, as 
already mentioned.  

 
A comparison between the standard displacement formulation 
and the new velocity-pressure formulation is shown in Figure 
4. For the standard stress analysis formulation, the finite 
volume method was used with a second-order central 
discretisation scheme in space and a first-order accurate 
scheme in time. The results obtained using the two 
formulations agree quite well. This shows that the velocity-
pressure approach with the aforementioned boundary 
conditions for pressure is a valid one.  

 
The effect of the discretisation scheme used for the first order 
time derivative of velocity in equation 12 was also investigated. 
The discretisation schemes compared are the first order Euler 
Implicit and a three time level method (or Backward 

Differencing). The latter is a second order accurate scheme and 
is also frequently used in computational fluid dynamics. In 
Figure 5 it can be seen that the Backward Differencing scheme 
is less dissipative that the Euler implicit, as expected. Over a 
period of 30s (300,000 time steps) the Euler Implicit dissipated 
about 14.7% and over 100 s (1,000,000 time steps) about 
33.3%. On the other hand the Backward Differencing over a 30 
s period has much smaller dissipation.    

 
The accuracy can be improved further with the decrease of the 
time step size. Figure 6 compares different time step sizes for 
Euler Implicit discretisation scheme. It can be seen that when 
the time step is decreased from 10-4s to 10-5s (C0=0.033) the 
accuracy over a 30s period improves about 7.5 %. When the 
time step is decreases from 10-5s to 10-6s (C0=0.0033) there is 
no significant change, only 0.62% improvement, but the 
computational overhead is quite substantial. 

   

 
Figure 5: Comparison of Euler Implicit and Backward 
Differencing scheme (envelope of end displacement). 

 

 
Figure 6: Effect of time step on the envelope of end 
displacement (Euler Implicit scheme with time steps 

10-4s, 10-5s and 10-6s). 
 

The results of the first order accurate Euler Implicit scheme 
with a decreased time step can be compared with those of the 
second order accurate Backward Differencing scheme. Figure 7 
illustrates that for a period of 30s the results of Backward 
Differencing with time step 10-4s and Euler Implicit with time 
step 10-5s are almost identical. The Backward differencing 
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scheme with 10-4s time step is 1.2% less dissipative than the 
Euler Implicit with 10-5s time step.  

 

 
Figure 7: Comparison of envelop of end displacement 

obtained with Euler Implicit (time step 10-5s) and 
Backward differencing (time step 10-4s). 

 
A parametric study was also undertaken with different beam 
dimensions.  The conditions, the predicted and analytic results 
as well as their differences are shown in table 2. 
   
In all cases the time step used was ∆t=10-4s, the temporal 
discretisation scheme applied was Backward differencing and 
the mesh resolution ∆x was kept constant. For example, for the 
case with 10m beam length the mesh used was 20x10cells. The 
end displacement is shown in figure 8. The percentage 
differences between the analytic solution and the predictions 
for this case are slightly above 10% as shown in Table 2. It 
must be noted however that as the analytical solution is 1D, the 
shorter the beam is in relation to its height, the less accurate the 
solution would be.   

 
Variable Analytical Predicted % Difference 

Beam dimensions: 10mx5m; end shear: 106 Pa 
Max Dispacement [m] 0.0995 0.0866 12.96 
Frequency [Hz] 13.41 11.64 13.29 

Beam size: 20mx5m; end shear: 106 Pa 
Max Dispacement [m] 0.68 0.62 8.82 
Frequency [Hz] 3.35 3.32 0.9 

Beam size: 40mx5m; end shear: 106 Pa 
Max Dispacement [m] 5.2 4.72 9.21 
Frequency [Hz] 0.84 0.86 2.05 

Table 2: Comparison between analytical and 
computational solutions for beams with different 

dimensions. 
 

 
Figure 8: End displacement for a beam with 

dimensions 10mx5m.  
 

 
Figure 9: End displacement for a beam with 

dimensions 40mx5m. 
 

For the case with double the beam length (40mx5m) the mesh 
used was 80x10cells (Figure 9). The end displacement was 
4.72m and the frequency was 0.86 Hz. The percentage 
difference between the analytical and the numerical solution is 
2.05 % for the frequency and 9.21% for the displacement 
(Table 2). More results can be found in references [9, 10,11].  

 

CONCLUSIONS 
A unified solution method was presented suitable for fluid-
structure interaction problems with no approximations made to 
the basic continuum model for Hookean solids and Newtonian 
fluids. The principal idea is that the fluid and structural 
behavior is described by a set of equations that has as primitive 
variables velocity and pressure. The pressure-velocity coupling 
is handled using the PISO algorithm. Since pressure is used as 
an independent variable, the study of structural deformations of 
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fully incompressible solids is straightforward while well-
known problems such as node locking are avoided. 
 
It was shown that the pressure at the fluid-structure interface is 
discontinuous and this poses challenges for the consistent 
boundary condition for the pressure equation. An approach 
similar to one used in fluid mechanics was employed.  

 
The solution method for FSI was validated against a transient 
beam bending test case. The solution method was stable and 
results close to the analytic solution or to the  standard 
displacement formulation were obtained. It was shown that the 
unified solution method is capable of solving standard solid 
mechanics problems with sufficient accuracy. The next step of 
this work is the application of this method to full FSI problems. 
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NOMENCLATURE 
Roman symbols 
Co - Courant number 
D m displacement 
f Hz frequency 
h m beam height/ cylinder thickness 
I - unit tensor  
K Pa bulk modulus 
L m beam length 
p Pa pressure 
ri m internal cylinder radius 
t s time 
U m/s velocity 
W m beam depth 
 
Greek symbols 
∆t s time step 
∆x m grid spacing 
δ m maximum end displacement 
ε - strain tensor 
εv - dilatation 
Ε Pa Young’s modulus 
η m2/s dynamic viscosity 
λ Pa Lame’s coefficient  
µ Pa Lame’s coefficient  
ν - Poison ratio 
ρ kg/m3 density 
σ Pa Stress tensor 
σij Pa Elements of the stress tensor 
τ Pa applied end shear 
ω Hz frequency of undamped oscillations 
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