145 research outputs found

    HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    Get PDF
    Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group

    Trastuzumab in the Adjuvant Treatment of HER2-Positive Early Breast Cancer Patients: A Meta-Analysis of Published Randomized Controlled Trials

    Get PDF
    BACKGROUND: Adjuvant trastuzumab therapy has yielded conflicting results for overall survival, concerns about central nervous system (CNS) metastasis, and questions about optimal schedule. Therefore, we carried out a meta-analysis to assess the benefits of concurrent or sequential trastuzumab with adjuvant chemotherapy for early breast cancer patients with HER2-positive tumors. METHODS: Computerized and manual searches were performed to identify randomized clinical trials comparing adjuvant chemotherapy with or without trastuzumab in HER2-positive early breast cancer patients. Odds ratios were used to estimate the association between the addition of trastuzumab to adjuvant chemotherapy and various survival outcomes. The fixed-effects or random-effects model was used to combine data. FINDINGS: With six eligible studies identified, this analysis demonstrated that patients with HER2-positive breast cancer derived benefit in disease-free survival, overall survival, locoregional recurrence and distant recurrence (all P<0.001) from the addition of trastuzumab to adjuvant chemotherapy, whereas trastuzumab did worse in CNS recurrence as compared to the control group (P = 0.018). Furthermore, concomitant use of trastuzumab significantly lowered the hazard of death (P<0.001) but bore a higher incidence of CNS recurrence (P = 0.010), while statistical significance failed to be discerned for either overall survival (P = 0.069) or CNS metastasis (P = 0.374) between the sequential and observation arms. CONCLUSION: This analysis verifies the efficacy of trastuzumab in the adjuvant setting. Additionally, our findings indirectly corroborate the superiority of concurrent trastuzumab to sequential use and also illuminate that prolonged survival is the possible reason for the higher incidence of CNS with trastuzumab versus observation

    A Combinatorial Approach to Detect Coevolved Amino Acid Networks in Protein Families of Variable Divergence

    Get PDF
    Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence

    Weekly cisplatin, epirubicin, and paclitaxel with granulocyte colony-stimulating factor support vs triweekly epirubicin and paclitaxel in locally advanced breast cancer: final analysis of a sicog phase III study

    Get PDF
    The present study aimed at evaluating whether a weekly cisplatin, epirubicin, and paclitaxel (PET) regimen could increase the pathological complete response (pCR) rate in comparison with a tri-weekly epirubicin and paclitaxel administration in locally advanced breast cancer (LABC) patients. Patients with stage IIIB disease were randomised to receive either 12 weekly cycles of cisplatin 30 mg m−2, epirubicin 50 mg m−2, and paclitaxel 120 mg m−2 (PET) plus granulocyte-colony stimulating factor support, or four cycles of epirubicin 90 mg m−2+paclitaxel 175 mg m−2 (ET) every 3 weeks. Overall, 200 patients (PET/ET=100/100) were included in this study. A pCR in both breast and axilla occurred in 16 (16%) PET patients and in six (6%) ET patients (P=0.02). The higher activity of PET was evident only in ER negative (27.5 vs 5.4%; P=0.026), and in HER/neu positive (31 vs 5%; P=0.037) tumours. The two arms yielded similar pCR rate in ER positive (PET/ET=7.5/7.1%) and HER/neu negative (PET/ET=10/6%) patients. At a 39 months median follow-up, 70 patients showed a progression or relapses (PET, 32 vs ET, 38). Anaemia, mucositis, peripheral neuropathy, and gastrointestinal toxicity were substantially more frequent in the PET arm. The PET weekly regimen is superior to ET in terms of pCR rate in LABC patients with ER negative and/or HER2 positive tumours Mature data in terms of disease-free and overall survival are needed to ascertain whether this approach could improve the prognosis of these subsets of LABC patients

    APP Processing Induced by Herpes Simplex Virus Type 1 (HSV-1) Yields Several APP Fragments in Human and Rat Neuronal Cells

    Get PDF
    Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS), causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1 might contribute to the pathogenesis of Alzheimer's disease (AD). This multifactorial neurodegenerative disorder is related to an overproduction of amyloid beta (Aβ) and other neurotoxic peptides, which occurs during amyloidogenic endoproteolytic processing of the transmembrane amyloid precursor protein (APP). The aim of our study was to identify the effects of productive HSV-1 infection on APP processing in neuronal cells. We found that infection of SH-SY5Y human neuroblastoma cells and rat cortical neurons is followed by multiple cleavages of APP, which result in the intra- and/or extra-cellular accumulation of various neurotoxic species. These include: i) APP fragments (APP-Fs) of 35 and 45 kDa (APP-F35 and APP-F45) that comprise portions of Aβ; ii) N-terminal APP-Fs that are secreted; iii) intracellular C-terminal APP-Fs; and iv) Aβ1-40 and Aβ1-42. Western blot analysis of infected-cell lysates treated with formic acid suggests that APP-F35 may be an Aβ oligomer. The multiple cleavages of APP that occur in infected cells are produced in part by known components of the amyloidogenic APP processing pathway, i.e., host-cell β-secretase, γ-secretase, and caspase-3-like enzymes. These findings demonstrate that HSV-1 infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials. It is tempting to speculate that intra- and extracellular accumulation of these species in the CNS resulting from repeated HSV-1 reactivation could, in the presence of other risk factors, play a co-factorial role in the development of AD

    Phosphorylation of Nicastrin by SGK1 Leads to Its Degradation through Lysosomal and Proteasomal Pathways

    Get PDF
    The gamma-secretase complex is involved in the intramembranous proteolysis of a variety of substrates, including the amyloid precursor protein and the Notch receptor. Nicastrin (NCT) is an essential component of the gamma-secretase complex and functions as a receptor for gamma-secretase substrates. In this study, we determined that serum- and glucocorticoid-induced protein kinase 1 (SGK1) markedly reduced the protein stability of NCT. The SGK1 kinase activity was decisive for NCT degradation and endogenous SGK1 inhibited gamma-secretase activity. SGK1 downregulates NCT protein levels via proteasomal and lysosomal pathways. Furthermore, SGK1 directly bound to and phosphorylated NCT on Ser437, thereby promoting protein degradation. Collectively, our findings indicate that SGK1 is a gamma-secretase regulator presumably effective through phosphorylation and degradation of NCT
    corecore