309 research outputs found

    Role of epithelial to mesenchymal transition in hepatocellular carcinoma

    Get PDF
    The epithelial to mesenchymal transition (EMT) is a multistep biological process whereby epithelial cells change in plasticity by transient de-differentiation into a mesenchymal phenotype. EMT and its reversal, mesenchymal to epithelial transition (MET), essentially occur during embryogenetic morphogenesis and have been increasingly described in fibrosis and cancer during the last decade. In carcinoma progression, EMT plays a crucial role in early steps of metastasis when cells lose cell-cell contacts due to ablation of E-cadherin and acquire increased motility to spread into surrounding or distant tissues. Epithelial plasticity has become a hot issue in hepatocellular carcinoma (HCC), as strong inducers of EMT such as transforming growth factor-β are able to orchestrate both fibrogenesis and carcinogenesis, showing rising cytokine levels in cirrhosis and late stage HCC. In this review, we consider the significance of EMT-MET in malignant hepatocytes as well as changes in the plasticity of hepatic stellate cells for cellular heterogeneity of HCC, and further aim at explaining the current limiting insights into EMT by snapshot analyses of HCC tissues. Recent advances in the identification of clinically relevant mechanisms that impinge on important EMT-transcription factors, as well as on miRNAs causing EMT signatures and HCC progression are highlighted. In addition, we draw particular attention to framing EMT in the context of potential clinical relevance for HCC patients. We conclude that some aspects of EMT are still elusive and further studies are required to better link the clinical management of HCC with biomarkers and targeted therapies related to EMT

    PI3K Functions in Cancer Progression, Anticancer Immunity and Immune Evasion by Tumors

    Get PDF
    The immunological surveillance of tumors relies on a specific recognition of cancer cells and their associate antigens by leucocytes of innate and adaptive immune responses. However, a dysregulated cytokine release can lead to, or be associated with, a failure in cell-cell recognition, thus, allowing cancer cells to evade the killing system. The phosphatidylinositol 3-kinase (PI3K) pathway regulates multiple cellular processes which underlie immune responses against pathogens or malignant cells. Conversely, there is accumulating evidence that the PI3K pathway is involved in the development of several malignant traits of cancer cells as well as their escape from immunity. Herein, we review the counteracting roles of PI3K not only in antitumor immune response but also in the mechanisms that cancer cells use to avoid leukocyte attack. In addition, we discuss, from antitumor immunological point of view, the potential benefits and disadvantages arising from use of anticancer pharmacological agents targeting the PI3K pathway

    Role of the tissue microenvironment as a therapeutic target in hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma is difficult to treat, primarily because the underlying molecular mechanisms driving clinical outcome are still poorly understood. Growing evidence suggests that the tissue microenvironment has a role in the biological behavior of the tumor. The main clinical issue is to identify the best target for therapeutic approaches. Here, we discuss the hypothesis that the entire tissue microenvironment might be considered as a biological target. However, the tissue microenvironment consists of several cellular and biochemical components, each of which displays a distinct biological activity. We discuss the major components of this environment and consider how they may interact to promote tumor/host crosstalk

    Calcium regulates HCC proliferation as well as EGFR recycling/degradation and could be a new therapeutic target in HCC

    Get PDF
    Calcium is the most abundant element in the human body. Its role is essential in physiological and biochemical processes such as signal transduction from outside to inside the cell between the cells of an organ, as well as the release of neurotransmitters from neurons, muscle contraction, fertilization, bone building, and blood clotting. As a result, intra- and extracellular calcium levels are tightly regulated by the body. The liver is the most specialized organ of the body, as its functions, carried out by hepatocytes, are strongly governed by calcium ions. In this work, we analyze the role of calcium in human hepatoma (HCC) cell lines harboring a wild type form of the Epidermal Growth Factor Receptor (EGFR), particularly its role in proliferation and in EGFR downmodulation. Our results highlight that calcium is involved in the proliferative capability of HCC cells, as its subtraction is responsible for EGFR degradation by proteasome machinery and, as a consequence, for EGFR intracellular signaling downregulation. However, calcium-regulated EGFR signaling is cell line-dependent. In cells responding weakly to the epidermal growth factor (EGF), calcium seems to have an opposite effect on EGFR internalization/degradation mechanisms. These results suggest that besides EGFR, calcium could be a new therapeutic target in HCC

    Effects of Grape Pomace Polyphenols and In Vitro Gastrointestinal Digestion on Antimicrobial Activity: Recovery of Bioactive Compounds

    Get PDF
    Grape pomace (GP), a major byproduct obtained from the winemaking process, is characterized by a high amount of phenolic compounds and secondary plant metabolites, with potential beneficial effects on human health. Therefore, GP is a source of bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activity. As people are paying more attention to sustainability, in this work, we evaluate two different extractions (aqueous and hydroalcoholic) of GP bioactive compounds. In vitro simulated gastrointestinal digestion of the GP extracts was performed to improve the bioavailability and bioaccessibility of polyphenols. The antioxidant activity (ABTS and DPPH assays) and the phenolic characterization of the extracts by UHPLC-DAD were evaluated. The antimicrobial effects of GP antioxidants in combination with a probiotic (Lactiplantibacillus plantarum) on the growth of pathogenic microorganisms (Escherichia coli, Bacillus megaterium, and Listeria monocytogenes) were evaluated. As a result, an increase of antioxidant activity of aqueous GP extracts during the gastrointestinal digestion, and a contextual decrease of hydroalcoholic extracts, were detected. The main compounds assessed by UHPLC-DAD were anthocyanins, phenolic acids, flavonoids, and stilbenes. Despite lower antioxidant activity, due to the presence of antimicrobial active compounds, the aqueous extracts inhibited the growth of pathogens

    Economic impact of industry-sponsored clinical trials in inflammatory bowel diseases: Results from the national institute of gastroenterology “Saverio de Bellis”

    Get PDF
    Introduction: The majority of the money spent on possible new medications’ clinical trials is accounted for by the innovative pharmaceutical sector, which also stimulates the economy of a nation. The objective of this study was to evaluate the impact of pharmaceutical industry-sponsored clinical trials (ISCTs) in inflammatory bowel diseases (IBDs) towards the national health service (NHS) in terms of avoided costs and leverage effect. Methodology: The research was conducted at National Institute of Gastroenterology, “Saverio De Bellis”, Castellana Grotte (Apulia, Italy) collecting data from profit ISCTs of pharmaceutical products conducted over the time period 2018-2020 with focus on inflammatory bowel diseases. After the quantification of health services and drug costs from the latter studies, avoided costs and leverage effects were then estimated. Results: The results on the avoided costs for healthcare facilities deriving from the conduct of clinical studies show that, in relation to the sample of five drug companies participating in our 2018-2020 analysis, out of a total of 235,102.46 €, identified as direct investment, 628,158.21 € of avoided costs for the NHS were measured, with an additional saving (leverage effect) for the NHS of 3.67 € for each € invested by the companies promoting clinical trials

    Phyto-Beneficial Traits of Rhizosphere Bacteria: In Vitro Exploration of Plant Growth Promoting and Phytopathogen Biocontrol Ability of Selected Strains Isolated from Harsh Environments

    Get PDF
    Beneficial interactions between plants and some bacterial species have been long recognized, as they proved to exert various growth-promoting and health-protective activities on economically relevant crops. In this study, the growth promoting and antifungal activity of six bacterial strains, Paenarthrobacter ureafaciens, Beijerinckia fluminensis, Pseudomonas protegens, Arthrobacter sp., Arthrobacter defluii, and Arthrobacter nicotinovorans, were investigated. The tested strains resulted positive for some plant growth promoting (PGP) traits, such as indole-3-acetic acid (IAA), 1-aminocyclopropane-1- carboxylate-deaminase (ACC-deaminase), siderophore production, and solubilization of phosphates. The effect of the selected bacteria on Arabidopsis thaliana seedlings growth was assessed using different morphological parameters. Bacterial activity against the phytopathogenic fungal species Aspergillus flavus, Fusarium proliferatum, and Fusarium verticillioides was also assessed, since these cause major yield losses in cereal crops and are well-known mycotoxin producers. Strains Pvr_9 (B. fluminensis) and PHA_1 (P. protegens) showed an important growth-promoting effect on A. thaliana coupled with a high antifungal activity on all the three fungal species. The analysis of bacterial broths through ultra performance liquid chromatography–mass spectrometry (UPLC–MS) and liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS/MS) confirmed the presence of potential PGP-compounds, among these are desferrioxamine B, aminochelin, asperchrome B, quinolobactin siderophores, and salicylic acid

    TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer

    Get PDF
    Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer
    • …
    corecore