134 research outputs found

    A comparison of CMB Angular Power Spectrum Estimators at Large Scales: the TT case

    Full text link
    In the context of cosmic microwave background (CMB) data analysis, we compare the efficiency at large scale of two angular power spectrum algorithms, implementing, respectively, the quadratic maximum likelihood (QML) estimator and the pseudo spectrum (pseudo-Cl) estimator. By exploiting 1000 realistic Monte Carlo (MC) simulations, we find that the QML approach is markedly superior in the range l=[2-100]. At the largest angular scales, e.g. l < 10, the variance of the QML is almost 1/3 (1/2) that of the pseudo-Cl, when we consider the WMAP kq85 (kq85 enlarged by 8 degrees) mask, making the pseudo spectrum estimator a very poor option. Even at multipoles l=[20-60], where pseudo-Cl methods are traditionally used to feed the CMB likelihood algorithms, we find an efficiency loss of about 20%, when we considered the WMAP kq85 mask, and of about 15% for the kq85 mask enlarged by 8 degrees. This should be taken into account when claiming accurate results based on pseudo-Cl methods. Some examples concerning typical large scale estimators are provided.Comment: 9 pages, 7 figures. Accepted for publication in MNRA

    On the impact of large angle CMB polarization data on cosmological parameters

    Get PDF
    (abridged) We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the Λ\LambdaCDM model. To complement large-angle polarization, we consider the high-resolution CMB datasets from either WMAP or Planck, as well as CMB lensing as traced by Planck. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low-resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ\tau, of order ~2σ2\sigma, robust to the choice of the complementary high-l dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ=0.066−0.013+0.012\tau = 0.066 ^{+0.012}_{-0.013}, again very stable against the particular choice for high-ℓ\ell data. We find that the amplitude of primordial fluctuations AsA_s, notoriously degenerate with τ\tau, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.50.5 and 1σ1\sigma. In particular, cleaning dust with \planck's 353 GHz data imposes a 1σ1\sigma downward shift in the value of the Hubble constant H0H_0, significantly contributing to the tension reported between CMB based and direct measurements of H0H_0. On the other hand, we find that the appearance of the so-called low ℓ\ell anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ\ell dataset employed.Comment: 19 pages, 4 figures, 3 table

    CMB Polarization Systematics, Cosmological Birefringence and the Gravitational Waves Background

    Full text link
    Cosmic Microwave Background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several non-standard, symmetry breaking theories of electrodynamics that allow for \textit{in vacuo} rotation if the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the CMB may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle α=−4.3∘±4.1∘\alpha=-4.3^\circ\pm4.1^\circ. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then 1∘1^\circ for Planck and 0.2∘0.2\circ for EPIC, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a GW background.Comment: 10 pages, 3 figure

    Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics

    Full text link
    We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the \emph{Planck} satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.Comment: 18 pages, 4 figures, 2 table

    Images of the Early Universe from the BOOMERanG experiment

    Get PDF
    The CMB is the fundamental tool to study the properties of the early universe and of the universe at large scales. In the framework of the Hot Big Bang model, when we look to the CMB we look back in time to the end of the plasma era, at a redshift ~ 1000, when the universe was ~ 50000 times younger, ~ 1000 times hotter and ~ 10^9 times denser than today. The image of the CMB can be used to study the physical processes there, to infer what happened before, and also to study the background geometry of our Universe

    ℓ-space spectroscopy of the Cosmic Microwave Background with the BOOMERanG experiment

    Get PDF
    The BOOMERanG experiment has recently produced detailed maps of the Cosmic Microwave Background, where sub-horizon structures are resolved with good signal to noise ratio. A power spectrum (spherical harmonics) analysis of the maps detects three peaks, at multipoles ℓ = (213_(-13)^(+10)),(541_(-32)^(+20))(845_(-25)^(+12)). In this paper we discuss the data analysis and the implications of these results for cosmology

    The Gamma-Flash data acquisition system for observation of terrestrial gamma-ray flashes

    Full text link
    Gamma-Flash is an Italian project funded by the Italian Space Agency (ASI) and led by the National Institute for Astrophysics (INAF), devoted to the observation and study of high-energy phenomena, such as terrestrial gamma-ray flashes and gamma-ray glows produced in the Earth's atmosphere during thunderstorms. The project's detectors and the data acquisition and control system (DACS) are placed at the "O. Vittori" observatory on the top of Mt. Cimone (Italy). Another payload will be placed on an aircraft for observations of thunderstorms in the air. This work presents the architecture of the data acquisition and control system and the data flow.Comment: 4 pages, 1 figure, Astronomical Data Analysis Software and System XXXII (2022

    The Euclid Science Ground Segment Distributed Infrastructure: System Integration and Challenges

    Get PDF
    The Science Ground Segment (SGS) of the Euclid mission provides distributed and redundant data storage and processing, federating nine Science Data Centres (SDCs) and a Science Operations Centre. The SGS reference architecture is based on loosely coupled systems and services, broadly organized into a common infrastructure of transverse software components and the scientific data Processing Functions. The SGS common infrastructure includes: 1) the Euclid Archive System (EAS), a central metadata repository which inventories, indexes and localizes the huge amount of distributed data; 2) a Distributed Storage System of EAS, providing a unified view of the SDCs storage systems and supporting several transfer protocols; 3) an Infrastructure Abstraction Layer, isolating the scientific data processing software from the underlying IT infrastructure and providing a common, lightweight workflow management system; 4) a Common Orchestration System, performing a balanced distribution of data and processing among the SDCs. Virtualization is another key element of the SGS infrastructure. We present the status of the Euclid SGS software infrastructure, the prototypes developed and the continuous system integration and testing performed through the Euclid “SGS Challenges”

    CAESAR: Space Weather archive prototype for ASPIS

    Full text link
    The project CAESAR (Comprehensive spAce wEather Studies for the ASPIS prototype Realization) is aimed to tackle all the relevant aspects of Space Weather (SWE) and realize the prototype of the scientific data centre for Space Weather of the Italian Space Agency (ASI) called ASPIS (ASI SPace Weather InfraStructure). This contribution is meant to bring attention upon the first steps in the development of the CAESAR prototype for ASPIS and will focus on the activities of the Node 2000 of CAESAR, the set of Work Packages dedicated to the technical design and implementation of the CAESAR ASPIS archive prototype. The product specifications of the intended resources that will form the archive, functional and system requirements gathered as first steps to seed the design of the prototype infrastructure, and evaluation of existing frameworks, tools and standards, will be presented as well as the status of the project in its initial stage.Comment: 4 pages, 2 figures, ADASS XXXII (2022) Proceeding
    • 

    corecore