18 research outputs found

    De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination

    Get PDF
    Myelination calls for a remarkable surge in cell metabolism to facilitate lipid and membrane production. Endogenous fatty acid (FA) synthesis represents a potentially critical process in myelinating glia. Using genetically modified mice, we show that Schwann cell (SC) intrinsic activity of the enzyme essential for de novo FA synthesis, fatty acid synthase (FASN), is crucial for precise lipid composition of peripheral nerves and fundamental for the correct onset of myelination and proper myelin growth. Upon FASN depletion in SCs, epineurial adipocytes undergo lipolysis, suggestive of a compensatory role. Mechanistically, we found that a lack of FASN in SCs leads to an impairment of the peroxisome proliferator-activated receptor (PPAR) γ–regulated transcriptional program. In agreement, defects in myelination of FASN-deficient SCs could be ameliorated by treatment with the PPARγ agonist rosiglitazone ex vivo and in vivo. Our results reveal that FASN-driven de novo FA synthesis in SCs is mandatory for myelination and identify lipogenic activation of the PPARγ transcriptional network as a putative downstream functional mediator

    Myelination and mTOR

    No full text
    Myelinating cells surround axons to accelerate the propagation of action potentials, to support axonal health, and to refine neural circuits. Myelination is metabolically demanding and, consistent with this notion, mTORC1—a signaling hub coordinating cell metabolism—has been implicated as a key signal for myelination. Here, we will discuss metabolic aspects of myelination, illustrate the main metabolic processes regulated by mTORC1, and review advances on the role of mTORC1 in myelination of the central nervous system and the peripheral nervous system. Recent progress has revealed a complex role of mTORC1 in myelinating cells that includes, besides positive regulation of myelin growth, additional critical functions in the stages preceding active myelination. Based on the available evidence, we will also highlight potential nonoverlapping roles between mTORC1 and its known main upstream pathways PI3K‐Akt, Mek‐Erk1/2, and AMPK in myelinating cells. Finally, we will discuss signals that are already known or hypothesized to be responsible for the regulation of mTORC1 activity in myelinating cells.ISSN:0894-1491ISSN:1098-113

    Dual function of the PI3K-Akt-mTORC1 axis in myelination of the peripheral nervous system

    No full text
    Myelination is a biosynthetically demanding process in which mTORC1, the gatekeeper of anabolism, occupies a privileged regulatory position. We have shown previously that loss of mTORC1 function in Schwann cells (SCs) hampers myelination. Here, we genetically disrupted key inhibitory components upstream of mTORC1, TSC1 or PTEN, in mouse SC development, adult homeostasis, and nerve injury. Surprisingly, the resulting mTORC1 hyperactivity led to markedly delayed onset of both developmental myelination and remyelination after injury. However, if mTORC1 was hyperactivated after myelination onset, radial hypermyelination was observed. At early developmental stages, physiologically high PI3K-Akt-mTORC1 signaling suppresses expression of Krox20 (Egr2), the master regulator of PNS myelination. This effect is mediated by S6K and contributes to control mechanisms that keep SCs in a not-fully differentiated state to ensure proper timing of myelination initiation. An ensuing decline in mTORC1 activity is crucial to allow myelination to start, while remaining mTORC1 activity drives myelin growth.ISSN:2050-084

    mTORC1 Is Transiently Reactivated in Injured Nerves to Promote c-Jun Elevation and Schwann Cell Dedifferentiation

    No full text
    Schwann cells (SCs) are endowed with a remarkable plasticity. When peripheral nerves are injured, SCs dedifferentiate and acquire new functions to coordinate nerve repair as so-called repair SCs. Subsequently, SCs redifferentiate to remyelinate regenerated axons. Given the similarities between SC dedifferentiation/redifferentiation in injured nerves and in demyelinating neuropathies, elucidating the signals involved in SC plasticity after nerve injury has potentially wider implications. c-Jun has emerged as a key transcription factor regulating SC dedifferentiation and the acquisition of repair SC features. However, the upstream pathways that control c-Jun activity after nerve injury are largely unknown. We report that the mTORC1 pathway is transiently but robustly reactivated in dedifferentiating SCs. By inducible genetic deletion of the functionally crucial mTORC1-subunit Raptor in mouse SCs (including male and female animals), we found that mTORC1 reactivation is necessary for proper myelin clearance, SC dedifferentiation, and consequently remyelination, without major alterations in the inflammatory response. In the absence of mTORC1 signaling, c-Jun failed to be upregulated correctly. Accordingly, a c-Jun binding motif was found to be enriched in promoters of genes with reduced expression in injured mutants. Furthermore, using cultured SCs, we found that mTORC1 is involved in c-Jun regulation by promoting its translation, possibly via the eIF4F-subunit eIF4A. These results provide evidence that proper c-Jun elevation after nerve injury involves also mTORC1-dependent post-transcriptional regulation to ensure timely dedifferentiation of SCs.ISSN:0270-6474ISSN:1529-240

    Ral GTPases in Schwann cells promote radial axonal sorting in the peripheral nervous system

    No full text
    Small GTPases of the Rho and Ras families are important regulators of Schwann cell biology. The Ras-like GTPases RalA and RalB act downstream of Ras in malignant peripheral nerve sheath tumors. However, the physiological role of Ral proteins in Schwann cell development is unknown. Using transgenic mice with ablation of one or both Ral genes, we report that Ral GTPases are crucial for axonal radial sorting. While lack of only one Ral GTPase was dispensable for early peripheral nerve development, ablation of both RalA and RalB resulted in persistent radial sorting defects, associated with hallmarks of deficits in Schwann cell process formation and maintenance. In agreement, ex vivo–cultured Ral-deficient Schwann cells were impaired in process extension and the formation of lamellipodia. Our data indicate further that RalA contributes to Schwann cell process extensions through the exocyst complex, a known effector of Ral GTPases, consistent with an exocyst-mediated function of Ral GTPases in Schwann cells.ISSN:0021-9525ISSN:1540-814

    Advance healthcare directives: binding or informational value?

    No full text
    Advance directives entail a refusal expressed by a still-healthy patient. Three consequences stem from that fact: (a) advance refusal is unspecific, since it is impossible to predict what the patient's conditions and the risk-benefit ratio may be in the foreseeable future; (b) those decisions cannot be as well informed as those formulated while the disease is in progress; (c) while both current consent and refusal can be revoked as the disease unfolds, until the treatment starts out, advance directives become effective when the patient becomes incapable or unconscious; such decisions can therefore not be revoked at any stage of the disease. Therefore, advance directives are binding for doctors only at the stage of advance treatment planning, i.e., only if they refer to an illness already in progress
    corecore