310 research outputs found

    Adiposity, joint and systemic inflammation: the additional risk of having a metabolic syndrome in rheumatoid arthritis.

    Get PDF
    Summary Adiposity is a predisposing condition to atherosclerosis, and rheumatoid arthritis (RA) also predisposes to accelerated atherosclerosis. Adiposity is one of the key features of the metabolic syndrome (MetS) and it is well recognised that a metabolic syndrome (and fat tissue) is a major player in this complex network. Endothelial dysfunction and carotid intima-media thickness, early pre-clinical markers of atherosclerosis which are the main determinants of cardiovascular (CV) morbidity and mortality, occur early on in RA. RA patients have an incidence of CV diseases at least two times higher than the general population. MetS and RA have a low and a severe-moderate degree of inflammation in common, respectively. Adipose tissue has emerged as a dynamic organ that releases several inflammatory and immune mediators (adipokines). In addition, fat has been recognised as a producer of B cell activating factor (BAFF) and of chemerin, an inducer at the chondrocyte level of IL1β, TNFα, IL6, IL8 and MMP13, thus possibly contributing to cartilage damage. Since fat produces inflammation, to obtain a full control of the CV risk in RA, data suggest that it is therefore mandatory to have a "tight control" of both RA and MetS-related inflammation, especially if RA presents MetS as a co-morbidity

    Obesity as a Risk and Severity Factor in Rheumatic Diseases (Autoimmune Chronic Inflammatory Diseases)

    Get PDF
    The growing body of evidence recognizing the adipose tissue as an active endocrine organ secreting bioactive mediators involved in metabolic and inflammatory disorders, together with the global epidemic of overweight and obesity, rise obesity as a hot topic of current research. The chronic state of low grade inflammation present in the obese condition and the multiple pleiotropic effects of adipokines on the immune system has been implicated in the pathogenesis of several inflammatory conditions including rheumatic autoimmune and inflammatory diseases. We will discuss the main relevant evidences on the role of the adipose tissue on immune and inflammatory networks and the more recent evidences regarding the effects of obesity on the incidence and outcomes of the major autoimmune chronic inflammatory diseases

    Migraine in SLE: role of antiphospholipid antibodies and Raynaud's phenomenon

    Get PDF
    Objectives: To determine the role of antiphospholipid antibodies (aPL) and of Raynaud's phenomenon (RP) in the development of migraine in patients with systemic lupus erythematosus (SLE). Methods: 50 unselected SLE patients and 20 rheumatoid arthritis (RA) controls underwent an interview to define the presence of migraine according to the guidelines of the International Headache Society (1988). Serological tests for aPL were performed in all patients. SLE patients were divided according to positivity for RP and/or aPL into 4 subsets: R-/aPL-, R-/aPL+, R+/aPL- and R+/aPL+. Data were analysed using Fisher's exact test, Chi-square test and U Mann-Whitney test. Results: SLE and RA patients were similar for demographic and clinical features; aPL positivity was found in a greater proportion of SLE patients versus RA controls (68% vs 25%, p=0.0036). 31 of the 50 lupic patients (62%) and 7 of the 20 RA controls (35%) suffered from migraine (OR=3, CI:1-8.9). Among SLE and RA patients, migraine was associated with aPL positivity (p=0.027 and p=0.019). Analysing the combined effect of aPL and RP on migraine, in R+/aPL+ patients we detected an higher frequency of migraine (85.7%) with respect to the patients negative for these two features (27%, p=0.0051, OR=16, CI:2.2-118) and to the patients positive only for aPL (65%, p=0.0031, OR=6.2, CI:1.2-32). Conclusions: Migraine in SLE and RA associates with aPL positivity. The simultaneous presence of RP increases by 2,5 times the probability of having migraine, suggesting that cerebral vasospasm might be more common in patients with peripheral vasospasm, given the presence of aPL

    MicroRNA-155—at the critical interface of innate and adaptive immunity in arthritis

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that fine-tune the cell response to a changing environment by modulating the cell transcriptome. MiR-155 is a multifunctional miRNA enriched in cells of the immune system and is indispensable for the immune response. However, when deregulated, miR-155 contributes to the development of chronic inflammation, autoimmunity, cancer and fibrosis. Herein, we review the evidence for the pathogenic role of miR-155 in driving aberrant activation of the immune system in Rheumatoid Arthritis, and its potential as a disease biomarker and therapeutic target

    Memory B cell subsets and plasmablasts are lower in early than in long-standing Rheumatoid Arthritis

    Get PDF
    Alterations of B cell subset distribution have been described in the peripheral blood (PB) of rheumatoid arthritis (RA) patients, but no data are available on differences between the onset and the established phases of the disease. The purpose of the study was to clarify whether a peculiar distribution of B cell subsets characterizes RA onset, thus leading to a more favorable clinical response to treatment, and to evaluate the possible association of a particular B cell subpopulation with response to therapy

    B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial

    Get PDF
    INTRODUCTION: An over-expression of CD19 has been shown in B cells of systemic sclerosis (SSc) and B cells are thought to contribute to the induction of skin fibrosis in the tight skin mouse model. The aim was to define the outcome on safety and the change in skin score after rituximab therapy in SSc patients and to correlate the clinical characteristics with the levels of interleukin (IL)-6 and with the immune cell infiltrate detected by immunohistochemistry. METHODS: Nine patients with SSc with mean age 40.9 +/- 11.1 years were treated with anti-CD20, 1 g at time 0 and after 14 days. Skin biopsy was performed at baseline and during the follow-up. B-cell activating factor (BAFF) and IL-6 levels were also determined at the follow-up times. RESULTS: After 6 months patients presented a median decrease of the skin score of 43.3% (range 21.1-64.0%), and a decrease in disease activity index and disease severity index. IL-6 levels decreased permanently during the follow up. After treatment, a complete depletion of peripheral blood B cells was observed in all but 2 patients. Only 3 patients presented CD20 positive cells in the biopsy of the involved skin at baseline. CONCLUSIONS: Anti-CD20 treatment has been well tolerated and SSc patients experienced an improvement of the skin score and of clinical symptoms. The clear fall in IL-6 levels could contribute to the skin fibrosis improvement, while the presence of B cells in the skin seems to be irrelevant with respect to the outcome after B cell depletion

    MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis

    Get PDF
    MicroRNA-155 (miR-155) is an important regulator of B cells in mice. B cells have a critical role in the pathogenesis of rheumatoid arthritis (RA). Here we show that miR-155 is highly expressed in peripheral blood B cells from RA patients compared with healthy individuals, particularly in the IgD-CD27- memory B-cell population in ACPA+ RA. MiR-155 is highly expressed in RA B cells from patients with synovial tissue containing ectopic germinal centres compared with diffuse synovial tissue. MiR-155 expression is associated reciprocally with lower expression of PU.1 at B-cell level in the synovial compartment. Stimulation of healthy donor B cells with CD40L, anti-IgM, IL-21, CpG, IFN-α, IL-6 or BAFF induces miR-155 and decreases PU.1 expression. Finally, inhibition of endogenous miR-155 in B cells of RA patients restores PU.1 and reduces production of antibodies. Our data suggest that miR-155 is an important regulator of B-cell activation in RA
    corecore