14 research outputs found

    Radiosensitivity in patients affected by ARPC1B deficiency: a new disease trait?

    Get PDF
    Actin-related protein 2/3 complex subunit 1B (ARPC1B) deficiency is a recently described inborn error of immunity (IEI) presenting with combined immunodeficiency and characterized by recurrent infections and thrombocytopenia. Manifestations of immune dysregulation, including colitis, vasculitis, and severe dermatitis, associated with eosinophilia, hyper-IgA, and hyper-IgE are also described in ARPC1B-deficient patients. To date, hematopoietic stem cell transplantation seems to be the only curative option for patients. ARPC1B is part of the actin-related protein 2/3 complex (Arp2/3) and cooperates with the Wiskott–Aldrich syndrome protein (WASp) in the regulation of the actin cytoskeleton remodeling and in driving double-strand break clustering for homology-directed repair. In this study, we aimed to investigate radiosensitivity (RS) in ARPC1B-deficient patients to assess whether it can be considered an additional disease trait. First, we performed trio-based next-generation-sequencing studies to obtain the ARPC1B molecular diagnosis in our index case characterized by increased RS, and then we confirmed, using three different methods, an increment of radiosensitivity in all enrolled ARPC1B-deficient patients. In particular, higher levels of chromatid-type aberrations and γH2AX foci, with an increased number of cells arrested in the G2/M-phase of the cell cycle, were found in patients’ cells after ionizing radiation exposition and radiomimetic bleomycin treatment. Overall, our data suggest increased radiosensitivity as an additional trait in ARPC1B deficiency and support the necessity to investigate this feature in ARPC1B patients as well as in other IEI with cytoskeleton defects to address specific clinical follow-up and optimize therapeutic interventions

    The Clinical Course of SARS-CoV-2 Infection in Patients With Autoimmune Neutropenia: A Retrospective Case Series Study

    No full text
    Severe acute respiratory syndrome coronavirus 2 infection in children with autoimmune neutropenia may be a cause for concern. In this retrospective study, none of the 24 autoimmune neutropenia cases manifested severe coronavirus disease 2019. We found a significant improvement in neutrophils and a reduction in lymphocytes at post-infection follow-up compared with the median of previous values. We speculate that this paradoxical effect may be due to postinfection immunological phenomena

    In Search for the Missing Link in APECED-like Conditions: Analysis of the AIRE Gene in a Series of 48 Patients

    Get PDF
    Autoimmune diseases are a heterogeneous group of disorders of the immune system. They can cluster in the same individual, revealing various preferential associations for polyendocrine autoimmune syndromes. Clinical observation, together with advances in genetics and the understanding of pathophysiological processes, has further highlighted that autoimmunity can be associated with immunodeficiency; autoimmunity may even be the first primary immunodeficiency manifestation. Analysis of susceptibility genes for the development of these complex phenotypes is a fundamental issue. In this manuscript, we revised the clinical and immunologic features and the presence of AIRE gene variations in a cohort of 48 patients affected by high polyautoimmunity complexity, i.e., APECED-like conditions, also including patients affected by primary immunodeficiency. Our results evidenced a significant association of the S278R polymorphism of the AIRE gene with APECED-like conditions, including both patients affected by autoimmunity and immunodeficiency and patients with polyautoimmunity compared to healthy controls. A trend of association was also observed with the IVS9+6 G>A polymorphism. The results of this genetic analysis emphasize the need to look for additional genetic determinants playing in concert with AIRE polymorphisms. This will help to improve the diagnostic workup and ensure a precision medicine approach to targeted therapies in APECED-like patients

    Altered NK-cell compartment and dysfunctional NKG2D/NKG2D-ligand axis in patients with ataxia-telangiectasia

    No full text
    Ataxia-telangiectasia (A-T) is a multisystem disorder caused by biallelic pathogenic variants in the gene encoding A-T mutated (ATM) kinase, a master regulator of the DNA damage response (DDR) pathway. Most A-T patients show cellular and/or humoral immunodeficiency that has been associated with cancer risk and reduced survival, but NK cells have not been thoroughly studied. Here we investigated NK cells of A-T patients with a special focus on the NKG2D receptor that triggers cytotoxicity upon engagement by its ligands (NKG2DLs) commonly induced via the DDR pathway on infected, transformed, and variously stressed cells. Using flow cytometry, we examined the phenotype and function of NK cells in 6 A-T patients as compared with healthy individuals. NKG2D expression was evaluated also by western blotting and RT-qPCR; plasma soluble NKG2DLs (sMICA, sMICB, sULBP1, ULBP2) were measured by ELISA. Results showed that A-T NK cells were skewed towards the CD56neg anergic phenotype and displayed decreased expression of NKG2D and perforin. NKG2D was reduced at the protein but not at the mRNA level and resulted in impaired NKG2D-mediated cytotoxicity in 4/6 A-T patients. Moreover, in A-T plasma we found 24-fold and 2-fold increase of sMICA and sULBP1, respectively, both inversely correlated with NKG2D expression. Overall, NK cells are disturbed in A-T patients showing reduced NKG2D expression, possibly caused by persistent engagement of its ligands, that may contribute to susceptibility to cancer and infections and represent novel targets for therapeutic interventions

    Targeted treatment of autoimmune cytopenias in primary immunodeficiencies

    No full text
    Primary Immunodeficiencies (PID) are a group of rare congenital disorders of the immune system. Autoimmune cytopenia (AIC) represents the most common autoimmune manifestation in PID patients. Treatment of AIC in PID patients can be really challenging, since they are often chronic, relapsing and refractory to first line therapies, thus requiring a broad variety of alternative therapeutic options. Moreover, immunosuppression should be fine balanced considering the increased susceptibility to infections in these patients. Specific therapeutic guidelines for AIC in PID patients are lacking. Treatment choice should be guided by the underlying disease. The study of the pathogenic mechanisms involved in the genesis of AIC in PID and our growing ability to define the molecular underpinnings of immune dysregulation has paved the way for the development of novel targeted treatments. Ideally, targeted therapy is directed against an overexpressed or overactive gene product or substitutes a defective protein, restoring the impaired pathway. Actually, the molecular diagnosis or a specific drug is not always available. However, defining the category of PID or the immunological phenotype can help to choose a semi-targeted therapy directed towards the suspected pathogenic mechanism. In this review we overview all the therapeutic interventions available for AIC in PID patients, according to different immunologic targets. In particular, we focus on T and/or B cells targeting therapies. To support decision making in the future, prospective studies to define treatment response and predicting/stratifying biomarkers for patients with AIC and PID are needed

    Humoral and cellular response following vaccination with the BNT162b2 mRNA COVID-19 vaccine in patients affected by primary immunodeficiencies

    Get PDF
    Mass SARS-Cov-2 vaccination campaign represents the only strategy to defeat the global pandemic we are facing. Immunocompromised patients represent a vulnerable population at high risk of developing severe COVID-19 and thus should be prioritized in the vaccination programs and in the study of the vaccine efficacy. Nevertheless, most data on efficacy and safety of the available vaccines derive from trials conducted on healthy individuals; hence, studies on immunogenicity of SARS-CoV2 vaccines in such populations are deeply needed. Here, we perform an observational longitudinal study analyzing the humoral and cellular response following the BNT162b2 mRNA COVID-19 vaccine in a cohort of patients affected by inborn errors of immunity (IEI) compared to healthy controls (HC). We show that both IEI and HC groups experienced a significant increase in anti-SARS-CoV-2 Abs 1 week after the second scheduled dose as well as an overall statistically significant expansion of the Ag-specific CD4+CD40L+ T cells in both HC and IEI. Five IEI patients did not develop any specific CD4+CD40L+ T cellular response, with one of these patients unable to also mount any humoral response. These data raise immunologic concerns about using Ab response as a sole metric of protective immunity following vaccination for SARS-CoV-2. Taken together, these findings suggest that evaluation of vaccine-induced immunity in this subpopulation should also include quantification of Ag-specific T cells
    corecore