8 research outputs found

    Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study

    Get PDF
    Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age.Methods: From the Italian LIPIGEN cohort, we selected 1188 (>= 18 years) and 708 (<18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation.Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives.Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age

    Twelve Variants Polygenic Score for Low-Density Lipoprotein Cholesterol Distribution in a Large Cohort of Patients With Clinically Diagnosed Familial Hypercholesterolemia With or Without Causative Mutations

    Get PDF
    : Background A significant proportion of individuals clinically diagnosed with familial hypercholesterolemia (FH), but without any disease-causing mutation, are likely to have polygenic hypercholesterolemia. We evaluated the distribution of a polygenic risk score, consisting of 12 low-density lipoprotein cholesterol (LDL-C)-raising variants (polygenic LDL-C risk score), in subjects with a clinical diagnosis of FH. Methods and Results Within the Lipid Transport Disorders Italian Genetic Network (LIPIGEN) study, 875 patients who were FH-mutation positive (women, 54.75%; mean age, 42.47±15.00 years) and 644 patients who were FH-mutation negative (women, 54.21%; mean age, 49.73±13.54 years) were evaluated. Patients who were FH-mutation negative had lower mean levels of pretreatment LDL-C than patients who were FH-mutation positive (217.14±55.49 versus 270.52±68.59 mg/dL, P<0.0001). The mean value (±SD) of the polygenic LDL-C risk score was 1.00 (±0.18) in patients who were FH-mutation negative and 0.94 (±0.20) in patients who were FH-mutation positive (P<0.0001). In the receiver operating characteristic analysis, the area under the curve for recognizing subjects characterized by polygenic hypercholesterolemia was 0.59 (95% CI, 0.56-0.62), with sensitivity and specificity being 78% and 36%, respectively, at 0.905 as a cutoff value. Higher mean polygenic LDL-C risk score levels were observed among patients who were FH-mutation negative having pretreatment LDL-C levels in the range of 150 to 350 mg/dL (150-249 mg/dL: 1.01 versus 0.91, P<0.0001; 250-349 mg/dL: 1.02 versus 0.95, P=0.0001). A positive correlation between polygenic LDL-C risk score and pretreatment LDL-C levels was observed among patients with FH independently of the presence of causative mutations. Conclusions This analysis confirms the role of polymorphisms in modulating LDL-C levels, even in patients with genetically confirmed FH. More data are needed to support the use of the polygenic score in routine clinical practice

    Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia

    Get PDF
    : Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and Results An lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score ≥1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups &lt;0.0001); however, subjects with FH/M- and lp(a) score ≥1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level ≥190 mg/dL (or from 68% to 50%, considering a more conservative formula). Conclusions Our study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH

    Determinants and correlates of adipose tissue insulin resistance index in Japanese women without diabetes and obesity

    No full text
    Introduction Determinants and correlates of a novel index of adipose tissue insulin resistance (AT-IR) (the product of fasting insulin and free fatty acid concentrations) were investigated in Japanese women without diabetes and obesity.Research design and methods Cross-sectional associations of AT-IR with fat mass and distribution, and IR-related cardiometabolic variables were examined in 210 young and 148 middle-aged women whose average body mass index (BMI) was &lt;23 kg/m2 and waist was &lt;80 cm. Multivariate linear regression analyses were used to identify most important determinants of AT-IR.Results Young and middle-aged women did not differ in AT-IR (3.5±2.7 and 3.2±2.1, respectively). In both young and middle-aged women, AT-IR was positively associated with trunk/leg fat ratio, a sophisticated measure of abdominal fat accumulation, fasting plasma glucose (FPG), fasting triglycerides (FTG), serum alanine aminotransferase and γ-glutamyl-transpeptidase (all p&lt;0.05). Furthermore, in middle-aged but not in young women, AT-IR showed positive associations with BMI, waist, fat mass index, low-density lipoprotein cholesterol, apolipoprotein B and systolic and diastolic blood pressure (BP) (all p&lt;0.05). AT-IR showed no association with hemoglobin A1c, high-density lipoprotein (HDL) cholesterol and apolipoprotein A1 in two groups of women. On multivariate analysis including waist, FPG, FTG, HDL cholesterol and systolic BP as independent variables, FPG, FTG and HDL cholesterol emerged as independent determinants of AT-IR in young women (cumulative R2=0.141) and waist in middle-aged women (cumulative R2=0.056). In a model which included trunk/leg fat ratio instead of waist, trunk/leg fat ratio and systolic BP were determinants of AT-IR in middle-aged women (cumulative R2=0.093). Results did not alter in young women.Conclusions AT-IR may be a simple and useful surrogate index of adipose tissue insulin resistance even in populations without diabetes and obesity

    Effect of alcohol consumption and the presence of fatty liver on the risk for incident type 2 diabetes: a population-based longitudinal study

    No full text
    Introduction Both fatty liver disease (FLD) and alcohol consumption have been reported to affect incident type 2 diabetes mellitus. The aim of this study was to evaluate the combined effect of FLD and alcohol consumption on incident type 2 diabetes.Research design and methods In this historical cohort study involving 9948 men, we investigated the influence of the presence of FLD and the grades of alcohol consumption on incident type 2 diabetes using Cox proportional hazards models. We categorized the participants into the following four groups: none or minimal alcohol consumption, &lt;40 g/week; light, 40–140 g/week; moderate, 140–280 g/week; or heavy alcohol consumption, &gt;280 g/week. FLD was diagnosed by abdominal ultrasonography.Results During the median 6.0-year follow-up, 568 participants developed type 2 diabetes. Heavy alcohol consumers with FLD showed a higher risk for developing type 2 diabetes compared with the other groups. Moderate alcohol consumers without FLD had a significantly higher risk for developing incident type 2 diabetes, compared with none or minimal and light alcohol consumers without FLD. In contrast, there was no apparent difference in the risk for incident type 2 diabetes between none or minimal, light, and moderate alcohol consumers with FLD. Furthermore, there was no statistically significant difference in the risk for incident type 2 diabetes between a moderate and heavy alcohol consumer without FLD and a none or minimal, light, and moderate alcohol consumer with FLD.Conclusions To prevent incident type 2 diabetes, we should acknowledge that the impact of alcohol consumption may vary in the presence of FLD

    PERsistent Sitagliptin treatment & Outcomes (PERS&O 2.0) study, long-term results: a real-world observation on DPP4-inhibitor effectiveness

    No full text
    Introduction Sitagliptin is a dipeptidyl peptidase 4 inhibitor for the treatment of type 2 diabetes (T2D). Limited real-world data on its effectiveness and safety are available from an Italian population.Research design and methods We evaluated long-term clinical data from the single-arm PERsistent Sitagliptin Treatment &amp; Outcomes (PERS&amp;O) study, which collected information on 440 patients with TD2 (275 men, 165 women; mean age 64.1 years; disease median duration: 12 years) treated with sitagliptin ‘add-on’. For each patient, we estimated the 10-year cardiovascular (CV) risk using the UK Prospective Diabetes Study (UKPDS) Risk Engine (RE). Drug survival was evaluated using Kaplan-Meier survival curves; repeated measures mixed effects models were used to evaluate the evolution of glycated hemoglobin (HbA1c) and CV risk during sitagliptin treatment.Results At baseline, most patients were overweight or obese (median body mass index (BMI) (kg/m2) 30.2); median HbA1c was 8.4%; median fasting plasma glucose: 172 mg/dL; median UKPDS RE score: 24.8%, being higher in men (median 30.2%) than in women (median 17.0%) as expected. Median follow-up from starting sitagliptin treatment was 5.6 years. From Kaplan-Meier curves, the estimated median drug survival was 32.8 months when considering discontinuation for any cause and 58.4 months when considering discontinuation for loss of efficacy. A significant improvement in HbA1c was evident during treatment with sitagliptin (p&lt;0.01): the reduction was rapid (median HbA1c after 4–6 months: 7.5%) and continued at longer follow-up. When comparing patients treated with sitagliptin versus those stopping sitagliptin and switching to another antihyperglycemic drug, we detected a significant difference in the evolution of HbA1c in favor of patients who continued sitagliptin treatment. The UKPDS RE score at 10 years and the BMI significantly improved during treatment with sitagliptin (p&lt;0.001). Adverse events were relatively uncommon.Conclusion Patients with T2D treated with sitagliptin achieved an improvement in metabolic control and a reduction in CV risk and did not experience relevant adverse events

    Twelve Variants Polygenic Score for Low-Density Lipoprotein Cholesterol Distribution in a Large Cohort of Patients With Clinically Diagnosed Familial Hypercholesterolemia With or Without Causative Mutations

    No full text
    : Background A significant proportion of individuals clinically diagnosed with familial hypercholesterolemia (FH), but without any disease-causing mutation, are likely to have polygenic hypercholesterolemia. We evaluated the distribution of a polygenic risk score, consisting of 12 low-density lipoprotein cholesterol (LDL-C)-raising variants (polygenic LDL-C risk score), in subjects with a clinical diagnosis of FH. Methods and Results Within the Lipid Transport Disorders Italian Genetic Network (LIPIGEN) study, 875 patients who were FH-mutation positive (women, 54.75%; mean age, 42.47±15.00 years) and 644 patients who were FH-mutation negative (women, 54.21%; mean age, 49.73±13.54 years) were evaluated. Patients who were FH-mutation negative had lower mean levels of pretreatment LDL-C than patients who were FH-mutation positive (217.14±55.49 versus 270.52±68.59 mg/dL, P<0.0001). The mean value (±SD) of the polygenic LDL-C risk score was 1.00 (±0.18) in patients who were FH-mutation negative and 0.94 (±0.20) in patients who were FH-mutation positive (P<0.0001). In the receiver operating characteristic analysis, the area under the curve for recognizing subjects characterized by polygenic hypercholesterolemia was 0.59 (95% CI, 0.56-0.62), with sensitivity and specificity being 78% and 36%, respectively, at 0.905 as a cutoff value. Higher mean polygenic LDL-C risk score levels were observed among patients who were FH-mutation negative having pretreatment LDL-C levels in the range of 150 to 350 mg/dL (150-249 mg/dL: 1.01 versus 0.91, P<0.0001; 250-349 mg/dL: 1.02 versus 0.95, P=0.0001). A positive correlation between polygenic LDL-C risk score and pretreatment LDL-C levels was observed among patients with FH independently of the presence of causative mutations. Conclusions This analysis confirms the role of polymorphisms in modulating LDL-C levels, even in patients with genetically confirmed FH. More data are needed to support the use of the polygenic score in routine clinical practice

    Evaluation of the performance of Dutch Lipid Clinic Network score in an Italian FH population: The LIPIGEN study

    No full text
    Background and aims: Familial hypercholesterolemia (FH) is an inherited disorder characterized by high levels of blood cholesterol from birth and premature coronary heart disease. Thus, the identification of FH patients is crucial to prevent or delay the onset of cardiovascular events, and the availability of a tool helping with the diagnosis in the setting of general medicine is essential to improve FH patient identification. Methods: This study evaluated the performance of the Dutch Lipid Clinic Network (DLCN) score in FH patients enrolled in the LIPIGEN study, an Italian integrated network aimed at improving the identification of patients with genetic dyslipidaemias, including FH. Results: The DLCN score was applied on a sample of 1377 adults (mean age 42.9 ± 14.2 years) with genetic diagnosis of FH, resulting in 28.5% of the sample classified as probable FH and 37.9% as classified definite FH. Among these subjects, 43.4% had at least one missing data out of 8, and about 10.0% had 4 missing data or more. When analyzed based on the type of missing data, a higher percentage of subjects with at least 1 missing data in the clinical history or physical examination was classified as possible FH (DLCN score 3–5). We also found that using real or estimated pre-treatment LDL-C levels may significantly modify the DLCN score. Conclusions: Although the DLCN score is a useful tool for physicians in the diagnosis of FH, it may be limited by the complexity to retrieve all the essential information, suggesting a crucial role of the clinical judgement in the identification of FH subjects
    corecore