109 research outputs found
Cholesterol impairment contributes to neuroserpin aggregation
Intraneural accumulation of misfolded proteins is a common feature of several
neurodegenerative pathologies including Alzheimer's and Parkinson's diseases,
and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is
a rare disease due to a point mutation in neuroserpin which accelerates protein
aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol
depletion induced either by prolonged exposure to statins or by inhibiting the
sterol regulatory binding-element protein (SREBP) pathway also enhances
aggregation of neuroserpin proteins. These findings can be explained
considering a computational model of protein aggregation under non-equilibrium
conditions, where a decrease in the rate of protein clearance improves
aggregation. Decreasing cholesterol in cell membranes affects their biophysical
properties, including their ability to form the vesicles needed for protein
clearance, as we illustrate by a simple mathematical model. Taken together,
these results suggest that cholesterol reduction induces neuroserpin
aggregation, even in absence of specific neuroserpin mutations. The new
mechanism we uncover could be relevant also for other neurodegenerative
diseases associated with protein aggregation.Comment: 7 figure
Biophysical Reviews’ topical issue: the 7th Nanoengineering for Mechanobiology Symposium 2024 Camogli, Genoa, Italy
This Commentary describes an open call for submissions to the upcoming Biophysical Reviews’ Issue Focus: The 7th Nanoengineering for Mechanobiology (Genova, Italy). The submission deadline is August 1st of 2024. Interested parties are requested to make contact with the Issue Focus editors prior to submission
Neuroprotective effects of thymoquinone by the modulation of ER stress and apoptotic pathway in in vitro model of excitotoxicity.
Experimental evidence indicates that the activation of ionotropic glutamate receptors plays an important role in neurological disorders’ models such as epilepsy, cerebral ischemia and trauma. The glutamate receptor agonist kainic acid (KA) induces seizures and excitotoxic cell death in the CA3 region of the hippocampus. Thymoquinone (TQ) is the most important component of the essential oil obtained from black cumin (Nigella sativa L.) seeds. It has many pharmacological actions including antioxidant, anti-inflammatory, and anti-apoptotic effects. TQ was used in an in vitro experimental model of primary cultures where excitotoxicity was induced. Briefly, rat organotypic hippocampal slices were exposed to 5 µM KA for 24 h. Cell death in the CA3 subregions of slices was quantified by measuring propidium iodide fluorescence. The cross-talk between TQ, ER stress and apoptotic pathways was investigated by Western blot. In untreated slices TQ (10 µM) induced a significant increase on the PSD95 levels and it decreased the excitotoxic injury induced by KA. Additionally, TQ was able to ameliorate the KA-induced increase in unfolded proteins GRP78 and GRP94 expression. Finally, TQ was able to partially rescue the reduction of the KA-induced apoptotic pathway activation. Our results suggest that TQ modulates the processes leading to post-kainate neuronal death in the CA3 hippocampal area
Angiomotin like-1 is a novel component of the N-cadherin complex affecting endothelial/pericyte interaction in normal and tumor angiogenesis
Transmission of mechanical force via cell junctions is an important component that molds cells into shapes consistent with proper organ function. Of particular interest are the cadherin transmembrane proteins, which play an essential role in connecting cell junctions to the intra-cellular cytoskeleton. Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving morphogenesis. We have previously identified the Amot protein family, which are scaffold proteins that integrate polarity, junctional, and cytoskeletal cues to modulate cellular shape in endothelial as well as epithelial cells. In this report, we show that AmotL1 is a novel partner of the N-cadherin protein complex. We studied the role of AmotL1 in normal retinal as well as tumor angiogenesis using inducible endothelial-specific knock-out mice. We show that AmotL1 is essential for normal establishment of vascular networks in the post-natal mouse retina as well as in a transgenic breast cancer model. The observed phenotypes were consistent with a non-autonomous pericyte defect. We show that AmotL1 forms a complex with N-cadherin present on both endothelial cells and pericytes. We propose that AmotL1 is an essential effector of the N-cadherin mediated endothelial/pericyte junctional complex
Pattern of antibiotic consumption in two Italian production chains differing by the endemic status for Porcine Reproductive and Respiratory Syndrome
The aim of this case study was to quantify antibiotic (AB) use in Italian weaning (W) and fattening (F) units differentiated for porcine reproductive and respiratory syndrome (PRRS) occurrence. Farms were classified as either PRRS negative (–) or PRRS positive (+) based on the circulation of the virus among the animals. In all the farms, the modified live PRRS virus (PRRSV) vaccine was provided to all the animals. In the PRRS– farms, the level of circulating antibodies was low, and the disease, in its clinical form, did not occur. In the PRRS+ farms, the level of circulating antibodies against the virus was high, and the disease was recurrent. Data regarding AB consumption were collected from 2017 to 2020, and the active compounds (ACs) were expressed as milligrams of AC/total kilogram of body weight (BW) produced. Each AC was classified into one of four categories according to the EuropeanMedicines Agency classification of ABs for prudent and responsible use in animals: Avoid, Restrict, Caution, and Prudence. Data regarding the ACs in each category were analyzed using a linear model that included production phase, PRRS status, and their interaction as factors. Performance parameters, average age of the pigs at the end of each phase, daily live weight gain, feed-to-gain ratio, total losses, cost index, and medication costs were significantly influenced by the PRRS chain. The use of class B ABs was not affected by production phase or PRRS status. Conversely, for class C ABs, interaction between the two factors (p = 0.02) was observed; W/PRRS+ and F/PRRS+ showed the greatest AB use for this class
(p = 0.003). For class D ABs, the interaction was significant (p = 0.01); class C and D ABs were used more in the weaning (p = 0.07) than in the fattening phase (p = 0.003). For the weaning phase, the use of class C and D ABs was greater in the PRRS+ than in the PRRS– chain (p < 0.01). In conclusion, PRRS status affected the growth of pigs and economic performance. Moreover, PRRS status significantly influenced the use of ABs during all the growing periods with the greatest impact being on the weaning phase
Multiscale mechanical analysis of the elastic modulus of skin
The mechanical properties of the skin determine tissue function and regulate dermal cell behavior. Yet measuring these properties remains challenging, as evidenced by the large range of elastic moduli reported in the literature-from below one kPa to hundreds of MPa. Here, we reconcile these disparate results by dedicated experiments at both tissue and cellular length scales and by computational models considering the multiscale and multiphasic tissue structure. At the macroscopic tissue length scale, the collective behavior of the collagen fiber network under tension provides functional tissue stiffness, and its properties determine the corresponding elastic modulus (100-200Â kPa). The compliant microscale environment (0.1-10Â kPa), probed by atomic force microscopy, arises from the ground matrix without engaging the collagen fiber network. Our analysis indicates that indentation-based elasticity measurements, although probing tissue properties at the cell-relevant length scale, do not assess the deformation mechanisms activated by dermal cells when exerting traction forces on the extracellular matrix. Using dermal-equivalent collagen hydrogels, we demonstrate that indentation measurements of tissue stiffness do not correlate with the behavior of embedded dermal fibroblasts. These results provide a deeper understanding of tissue mechanics across length scales with important implications for skin mechanobiology and tissue engineering. STATEMENT OF SIGNIFICANCE: Measuring the mechanical properties of the skin is essential for understanding dermal cell mechanobiology and designing tissue-engineered skin substitutes. However, previous results reported for the elastic modulus of skin vary by six orders of magnitude. We show that two distinct deformation mechanisms, related to the tension-compression nonlinearity of the collagen fiber network, can explain the large variations in elastic moduli. Furthermore, we show that microscale indentation, which is frequently used to assess the stiffness perceived by cells, fails to engage the fiber network, and therefore cannot predict the behavior of dermal fibroblasts in stiffness-tunable fibrous hydrogels. This has important implications for how to measure and interpret the mechanical properties of soft tissues across length scales
Bursts of activity in collective cell migration
Dense monolayers of living cells display intriguing relaxation dynamics,
reminiscent of soft and glassy materials close to the jamming transition, and
migrate collectively when space is available, as in wound healing or in cancer
invasion. Here we show that collective cell migration occurs in bursts that are
similar to those recorded in the propagation of cracks, fluid fronts in porous
media and ferromagnetic domain walls. In analogy with these systems, the
distribution of activity bursts displays scaling laws that are universal in
different cell types and for cells moving on different substrates. The main
features of the invasion dynamics are quantitatively captured by a model of
interacting active particles moving in a disordered landscape. Our results
illustrate that collective motion of living cells is analogous to the
corresponding dynamics in driven, but inanimate, systems
Anisotropic topographies restore endothelial monolayer integrity and promote the proliferation of senescent endothelial cells
Thrombogenicity remains a major issue in cardiovascular implants (CVIs). Complete surficial coverage of CVIs by a monolayer of endothelial cells (ECs) prior to implantation represents a promising strategy but is hampered by the overall logistical complexity and the high number of cells required. Consequently, extensive cell expansion is necessary, which may eventually lead to replicative senescence. Considering that micro-structured surfaces with anisotropic topography may promote endothelialization, we investigated the impact of gratings on the biomechanical properties and the replicative capacity of senescent ECs. After cultivation on gridded surfaces, the cells showed significant improvements in terms of adherens junction integrity, cell elongation, and orientation of the actin filaments, as well as enhanced yes-associated protein nuclear translocation and cell proliferation. Our data therefore suggest that micro-structured surfaces with anisotropic topographies may improve long-term endothelialization of CVIs.
Keywords: aging; anisotropy; endothelial cells; monolayer integrity; proliferation; senescence; telomere; topograph
Balanços energéticos agropecuários: uma importante ferramenta como indicativo de sustentabilidade de agroecossistemas.
No Brasil, pouca atenção se tem dado à s formas e caminhos com que os fluxos energéticos se distribuem nos sistemas produtivos. Na agropecuária, a atenção tem sido voltada a novas fontes de energia (biomassa) ou em tecnologia alternativa, visando a racionalização do uso de energia fóssil ou elétrica. Entretanto, a agricultura tem se desenvolvido baseada fortemente na utilização intensiva de máquinas agrÃcolas, com conseqüente uso de combustÃveis fósseis. Um fator de estrangulamento muito forte no consumo energético geral tem sido a utilização massiva de fertilizantes derivados do petróleo nos agroecossistemas. Estudos de Balanços Energéticos visam determinar os pontos de estrangulamento energético fundamentando a busca por tecnologias poupadoras de energia, especialmente aquelas de origem fóssil (combustÃvel, fertilizante, agrotóxicos, energia despendida na fabricação das máquinas e implementos, etc.). No Brasil, a Região Sul, é onde se encontram vários trabalhos buscando uma agricultura mais auto-sustentável, do ponto de vista da utilização da energia. Em vista da possibilidade de eventuais futuras crises energéticas, o presente trabalho procura analisar o estado-da-arte dos estudos em Balanço Energético, no Brasil e no Mundo, como uma ferramenta de indicação da sustentabilidade dos sistemas agropecuários
Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression
Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A−/− tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target
- …