202 research outputs found

    Inulin for Cancer Therapy: Present and Perspectives

    Get PDF
    Inulin is an extremely adaptable polysaccharides consisting of glucopyranose end-capped (\u3b2-1,2) fructose repeating units and, as it is, can be classified as an inherently multifunctional polymeric scaffold. It may be further functionalized employing mild conditions to give rise desired biological and physicochemical properties exploitable for targeted anticancer applications (e.g., active targeting toward specific cytotypes, self-assembling behavior, selective cytoxicity and hyperthermia features). In this review, the main chemical features and the inulin derivatives applications in the field of targeted anticancer therapy is reported and discusse

    Photocrosslinkable polyaspartamide/polylactide copolymer and its porous scaffolds for chondrocytes

    Get PDF
    With the aim to produce, by a simple and reproducible technique, porous scaffolds potentially employable for tissue engineering purposes, in this work, we have synthesized a methacrylate (MA) copolymer of \u3b1,\u3b2-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) and polylactic acid (PLA). PHEA-PLA-MA has been dissolved in organic solvent at different concentrations in the presence of NaCl particles with different granulometry, and through UV irradiation and further salt leaching technique, various porous scaffolds have been prepared. Obtained samples have been characterized by scanning electron microscopy and their porosity has been evaluated as well as their degradation profile in aqueous medium in the absence or in the presence of esterase from porcine liver. PHEA-PLA-MA scaffold that has shown homogeneous porosity and the best degradation profile has been further characterized to study its mechanical properties along with its capacity to incorporate and to control the release of dexamethasone. Finally, the ability to allow a three-dimensional culture of bovine articular chondrocytes have been also investigate

    Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery

    Get PDF
    PEGylated graphene oxide (GO) has shown potential as NIR converting agent to produce local heat useful in breast cancer therapy, since its suitable photothermal conversion, high stability in physiological fluids, biocompatibility and huge specific surface. GO is an appealing nanomaterial for potential clinical applications combining drug delivery and photothermal therapy in a single nano-device capable of specifically targeting breast cancer cells. However, native GO sheets have large dimensions (0.5-5 mu m) such that tumor accumulation after a systemic administration is usually precluded. Herein, we report a step-by-step synthesis of folic acid-functionalized PEGylated GO, henceforth named GO-PEG-Fol, with small size and narrow size distribution (similar to 30 +/- 5 nm), and the ability of efficiently converting NIR light into heat. GO-PEG-Fol consists of a nano-GO sheet, obtained by fragmentation of GO by means of non-equilibrium plasma etching, fully functionalized with folic acid-terminated PEG(2000) chains through amidic coupling and azide-alkyne click cycloaddition, which we showed as active targeting agents to selectively recognize breast cancer cells such as MCF7 and MDA-MB-231. The GO-PEG-Fol incorporated a high amount of doxorubicin hydrochloride (Doxo) (> 33%) and behaves as NIR-light-activated heater capable of triggering sudden Doxo delivery inside cancer cells and localized hyperthermia, thus provoking efficient breast cancer death. The cytotoxic effect was found to be selective for breast cancer cells, being the IC50 up to 12 times lower than that observed for healthy fibroblasts. This work established plasma etching as a cost-effective strategy to get functionalized nano-GO with a smart combination of properties such as small size, good photothermal efficiency and targeted cytotoxic effect, which make it a promising candidate as photothermal agent for the treatment of breast cancer

    Modulating the release of bioactive molecules of human mesenchymal stromal cell secretome: Heparinization of hyaluronic acid-based hydrogels

    Get PDF
    An amine derivative of hyaluronic acid (HA) was crosslinked to obtain a 3D dried sponge. The sponge was subsequently rehydrated using secretome from human mesenchymal stromal cells (MSCs), resulting in the formation of a hydrogel. The release kinetics analysis demonstrated that the hydrogel effectively sustained secretome release, with 70% of the initially loaded wound-healing-associated cytokines being released over a 12-day period. Tuning the hydrogel properties through heparin crosslinking resulted in a biomaterial with a distinct mechanism of action. Specifically, the presence of heparin enhanced water uptake capacity of the hydrogel and increased its sensitivity to enzymatic degradation. Notably, the heparin crosslinking also led to a significant retention of cytokines within the hydrogel matrix. Overall, the secretome-rehydrated HA hydrogel holds promise as a versatile device for regenerative medicine applications: the non-heparinized hydrogel may function as a biomaterial with low reabsorption rates, sustaining the release of bioactive molecules contained in MSC secretome. In contrast, the heparinized hydrogel may serve as a depot of bioactive molecules with faster reabsorption rates. Given its patch-like characteristic, the HA-based hydrogel appears suitable as topical treatment for external organs, such as the skin

    A Fibrillar Biodegradable Scaffold for Blood Vessels Tissue Engineering

    Get PDF
    In recent years there has been a growing interest for the development of tubular scaffolds employed to assist the replacement of small blood vessels. Materials designed for this purpose need to be biodegradable, have good mechanical properties and improve cell adhesion, proliferation and differentiation. To obtain biomaterials with these properties, electrospinning seems to be one of the most useful technique. Several biodegradable synthetic polymers or constituents of the extracellular matrix (ECM) have been electrospun showing optimal mechanical properties and biodegradability. However, such polymers are lacking in versatile chemical structure affordable to immobilize growth factors or chemokines. The glycosaminoglycan heparin is able to bind several growth factors like vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) and, when grafted onto the scaffold surface it is able to attract cells thus improving their proliferation and differentiation. Aim of this research was the production and the preliminary in vitro biological characterization of a new biodegradable material, obtained by electrospun a polyaminoacid-graft-polyester copolymer. The electrospun biomaterial has been successfully grafted with heparin exploiting the better chemical reactivity of the polyaminoacid portions of the graft copolymer. Then its morphology has been investigated by scanning electron microscopy (SEM) and the potential biodegradability of the material has been studied until 60 days. Preliminary biological data in vitro, on human endothelial cells, show a good compatibility of the scaffold obtained by electrospinning, with regard to cell adhesion and proliferation. Experiments are in progress to evaluate the effects of heparin on cell differentiation

    Ketorolak-dekstran konjugati: sinteza, in vitro i in vivo vrednovanje

    Get PDF
    Ketorolac is a non-steroidal anti-inflammatory drug. Dextran conjugates of ketorolac (KD) were synthesized and characterized to improve ketorolac aqueous solubility and reduce gastrointestinal side effects. An N-acylimidazole derivative of ketorolac (KAI) was condensed with a model carrier polymer, dextran of different molecular masses (40000, 60000, 110000 and 200000). IR spectral data confirmed formation of ester bonding. Ketorolac contents were evaluated by UV-spectrophotometric analysis. The molecular mass was determined by measuring viscosity using the Mark-Howink-Sakurada equation. In vitro hydrolysis studies were performed in aqueous buffers (pH 1.2, 7.4, 9) and in 80% (V/V) human plasma (pH 7.4). At pH 9, a higher rate of ketorolac release from KD was observed as compared to aqueous buffer of pH 7.4 and 80% human plasma (pH 7.4), following first-order kinetics. In vivo biological screening in mice and rats indicated that conjugates retained analgesic and anti-inflammatory activities with significantly reduced ulcerogenicity compared to the parent drug.U radu je opisana sinteza konjugata dektrana i protuupalnog lijeka ketorolaka (KD). Konjugati su pripravljeni da bi se povećala topljivost ketorolaka u vodi i smanjila njegova nusdjelovanja u gastrointestinanom traktu. Ketorak je prvo preveden u N-acilimidazolni derivat (KAI) koji je kondenziran s polimernim nosačem, dekstranom različitih molekulskih masa (40000, 60000, 110000 i 200000). IR-spektri potvrdili su nastajanje esterske veze. Udio ketorolaka u konjugatu određen je UV-spektrofotometrijskom analizom. Molekulske mase određene su mjerenjem viskoznosti koristeći Mark-Howink-Sakurada jednadžbu. Hidroliza in vitro praćena je u puferskim otopinama (pH 1,2, 7,4 i 9) i u 80% V/V humanoj plazmi (pH 7,4). Pri pH 9 primjećeno je značajno brže oslobađanje ketorolaka iz KD nego u puferskoj otopini pH 7,4 i krvnoj plazmi. Oslobađanje je prati kinetiku prvog reda. In vivo biološka ispitivanja na miševima i štakorima ukazuju da konjugati imaju analgetsko i protuupalno djelovanje, a značajno smanjeno ulcerogeno djelovanje

    BIOCOMPATIBILITY AND BIODEGRADABILITY OF ELECTROSPUN PHEA-PLA SCAFFOLDS: OUR PRELIMINARY EXPERIENCE IN A MURINE ANIMAL MODEL

    Get PDF
    We obtained a nano-fibrillar scaffold starting from a polymeric solution which, through electrospinning, gave a biodegradable material with optimal mechanical features and the capacity to allow cell adhesion. In this paper we report the in-vivo application on a murine animal model of two electrospun biodegradable materials, specifically designed to create tubular structures. In one case PHEA-PLA was co-spun with silk fibroin (Fibro-PHEAPLA) by a parallel electrospinning process to obtain a scaffold with two different polymeric fibers. In the other case, PHEA-PLA was mixed with polycaprolactone (PCLPHEA-PLA) to obtain a hybrid fibers scaffold. The in-vitro assay showed fibroblast colonization in both materials. The scaffolds were implanted in the dorsal fascial pouch of rats to evaluate their in-vivo Biocompatibility and tissue integration. Histopathological findings showed that after implantation a neutrophilic reaction associated to colliquative necrosis was predominant, particularly for PCL-PHEA-PLA. Fibro-PCL-PHEA caused a non organized stromal reaction. Cell adhesion was confirmed at SEM scan. Both materials were totally absorbed after 40 days with an inflammatory reaction. This preliminary study showed that biocompatibility of the scaffolds needs further investigation. The capability of the materials to be functionalized could allow us to modulate the inflammatory host response

    Nicotinamide alone accelerates the conversion of mouse embryonic stem cells into mature neuronal populations.

    Get PDF
    Vitamin B3 has been shown to play an important role during embryogenesis. Specifically, there is growing evidence that nicotinamide, the biologically active form of vitamin B3, plays a critical role as a morphogen in the differentiation of stem cells to mature cell phenotypes, including those of the central nervous system (CNS). Detailed knowledge of the action of small molecules during neuronal differentiation is not only critical for uncovering mechanisms underlying lineage-specification, but also to establish more effective differentiation protocols to obtain clinically relevant cells for regenerative therapies for neurodegenerative conditions such as Huntington's disease (HD). Thus, this study aimed to investigate the potential of nicotinamide to promote the conversion of stem cells to mature CNS neurons. METHODS: Nicotinamide was applied to differentiating mouse embryonic stem cells (mESC; Sox1GFP knock-in 46C cell line) during their conversion towards a neural fate. Cells were assessed for changes in their proliferation, differentiation and maturation; using immunocytochemistry and morphometric analysis methods. RESULTS: Results presented indicate that 10 mM nicotinamide, when added at the initial stages of differentiation, promoted accelerated progression of ESCs to a neural lineage in adherent monolayer cultures. By 14 days in vitro (DIV), early exposure to nicotinamide was shown to increase the numbers of differentiated βIII-tubulin-positive neurons. Nicotinamide decreased the proportion of pluripotent stem cells, concomitantly increasing numbers of neural progenitors at 4 DIV. These progenitors then underwent rapid conversion to neurons, observed by a reduction in Sox 1 expression and decreased numbers of neural progenitors in the cultures at 14 DIV. Furthermore, GABAergic neurons generated in the presence of nicotinamide showed increased maturity and complexity of neurites at 14 DIV. Therefore, addition of nicotinamide alone caused an accelerated passage of pluripotent cells through lineage specification and further to non-dividing mature neurons. CONCLUSIONS: Our results show that, within an optimal dose range, nicotinamide is able to singly and selectively direct the conversion of embryonic stem cells to mature neurons, and therefore may be a critical factor for normal brain development, thus supporting previous evidence of the fundamental role of vitamins and their metabolites during early CNS development. In addition, nicotinamide may offer a simple effective supplement to enhance the conversion of stem cells to clinically relevant neurons
    • …
    corecore