28 research outputs found

    High intrinsic activity of the oxygen evolution reaction in low-cost NiO nanowall electrocatalysts

    Get PDF
    NiO nanowalls grown by low-cost chemical bath deposition and thermal annealing are a high-efficiency and sustainable electrocatalytst for OER

    Correction: High intrinsic activity of the oxygen evolution reaction in low-cost NiO nanowall electrocatalysts

    Get PDF
    Correction for 'High intrinsic activity of the oxygen evolution reaction in low-cost NiO nanowall electrocatalysts' by Salvatore Cosentino et al., Mater. Adv., 2020, DOI: 10.1039/d0ma00467g

    Colloidal-structured metallic micro-grids: High performance transparent electrodes in the red and infrared range

    Get PDF
    project PON_206_2 project PRN 2014/2020 ALTALUZ (PTDC/CTM-ENE/5125/2014 PTDC/NAN-OPT/28430/2017 PTDC/NAN-OPT/28837/2017 PTDC/EAM-PEC/29905/2017 SFRH/BPD/114833/2016 SFRH/BPD/115566/2016One of the most promising approaches to produce industrial-compatible Transparent Conducting Materials (TCMs) with excellent characteristics is the fabrication of TCO/metal/TCO multilayers. In this article, we report on the electro-optical properties of a novel high-performing TCO/metal/TCO structure in which the intra-layer is a micro-structured metallic grid instead of a continuous thin film. The grid is obtained by evaporation of Ag through a mask of polystyrene colloidal micro-spheres deposited by the Langmuir-Blodgett method and partially dry-etched in plasma. IZO/Ag grid/IZO structures with different thicknesses and mesh dimensions have been fabricated, exhibiting excellent electrical characteristics (sheet resistance below 10 Ω/□) and particularly high optical transmittance in the near-infrared spectral region as compared to planar (unstructured) TCM multilayers. Numerical simulations were also used to highlight the role of the Ag mesh parameters on the electrical properties.preprintpublishe

    Molecular Investigation on a Triple Negative Breast Cancer Xenograft Model Exposed to Proton Beams

    Get PDF
    Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC. Our study aimed to analyze the in vivo molecular response to PT and its efficacy in a MDA-MB-231 TNBC xenograft model. TNBC xenograft models were irradiated with 2, 6 and 9 Gy of PT. Gene expression profile (GEP) analyses and immunohistochemical assay (IHC) were performed to highlight specific pathways and key molecules involved in cell response to the radiation. GEP analysis revealed in depth the molecular response to PT, showing a considerable immune response, cell cycle and stem cell process regulation. Only the dose of 9 Gy shifted the balance toward pro-death signaling as a dose escalation which can be easily performed using proton beams, which permit targeting tumors while avoiding damage to the surrounding healthy tissue

    ELIMED: MEDICAL APPLICATION AT ELI-BEAMLINES. STATUS OF THE COLLABORATION AND FIRST RESULTS

    Get PDF
    ELI-Beamlines is one of the four pillars of the ELI (Extreme Light Infrastructure) pan-European project. It will be an ultrahigh-intensity, high repetition-rate, femtosecond laser facility whose main goal is to generate and apply high-brightness X-ray sources and accelerated charged particles. In particular, medical applications are treated by the ELIMED task force, which has been launched by collaboration between ELI and INFN researchers. ELIMED aims to demonstrate the clinical applicability of laser accelerated ions. In this article, the state of the ELIMED project and the first scientific results are reported. The design and realisation of a preliminary beam handling system and of an advanced spectrometer for diagnostics of high energy (multi-MeV) laser-accelerated ion beams will also be briefly presented

    ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines

    Get PDF
    ELI-Beamlines is one of the pillars of the pan-European project ELI (Extreme Light Infrastructure). It will be an ultra high-intensity, high repetition-rate, femtosecond laser facility whose main goal is generation and applications of high-brightness X-ray sources and accelerated charged particles in different fields. Particular care will be devoted to the potential applicability of laser-driven ion beams for medical treatments of tumors. Indeed, such kind of beams show very interesting peculiarities and, moreover, laser-driven based accelerators can really represent a competitive alternative to conventional machines since they are expected to be more compact in size and less expensive. The ELIMED project was launched thanks to a collaboration established between FZU-ASCR (ELI-Beamlines) and INFN-LNS researchers. Several European institutes have already shown a great interest in the project aiming to explore the possibility to use laser-driven ion (mostly proton) beams for several applications with a particular regard for medical ones. To reach the project goal several tasks need to be fulfilled, starting from the optimization of laser-target interaction to dosimetric studies at the irradiation point at the end of a proper designed transport beam-line. Researchers from LNS have already developed and successfully tested a high-dispersive power Thomson Parabola Spectrometer, which is the first prototype of a more performing device to be used within the ELIMED project. Also a Magnetic Selection System able to produce a small pencil beam out of a wide energy distribution of ions produced in laser-target interaction has been realized and some preliminary work for its testing and characterization is in progress. In this contribution the status of the project will be reported together with a short description of the of the features of device recently developed.Conference on Plasma Physics by Laser and Applications (PPLA), Oct 02-04, 2013, Univ Salento, Lecce, Ital

    Transparent Conductors based on Ag Nanolayer embedded in Semiconductor Oxides

    No full text
    Aim of this work is the fabrication, processing and characterization of ultrathin TCO/Ag/TCO transparent electrodes. The study, is also focused on the optimization of structural, optical and electrical properties for several applications. The thesis is organized as follows: Chapter 1: it introduces the optoelectronic devices and their optical and electrical properties. Chapter 2: it presents a detailed discussion of the basic electronic structures and optical properties of TCO materials emphasizing the key properties giving them some unique properties. Chapter 3: it treats of very thin TCO/Ag/TCO multilayer structures grown by RF magnetron sputtering. Synthesis and properties of TCO/Ag/TCO multilayers as a function of different combinations of AZO and ITO top and bottom TCO layers, and as function of the Ag film thickness, are investigated. Chapter 4: it describes the compatibility of the AZO/Ag/AZO multilayers with some practical applications
    corecore