17 research outputs found

    Direct evaporative cooling of 39K atoms to Bose-Einstein condensation

    Full text link
    We report the realization of Bose-Einstein condensates of 39K atoms without the aid of an additional atomic coolant. Our route to Bose-Einstein condensation comprises Sub Doppler laser cooling of large atomic clouds with more than 10^10 atoms and evaporative cooling in optical dipole traps where the collisional cross section can be increased using magnetic Feshbach resonances. Large condensates with almost 10^6 atoms can be produced in less than 15 seconds. Our achievements eliminate the need for sympathetic cooling with Rb atoms which was the usual route implemented till date due to the unfavourable collisional property of 39K. Our findings simplify the experimental set-up for producing Bose-Einstein condensates of 39K atoms with tunable interactions, which have a wide variety of promising applications including atom-interferometry to studies on the interplay of disorder and interactions in quantum gases.Comment: 7 pages, 6 figure

    Cooling Atoms in an Optical Trap by Selective Parametric Excitation

    Get PDF
    We demonstrate the possibility of energy-selective removal of cold atoms from a tight optical trap by means of parametric excitation of the trap vibrational modes. Taking advantage of the anharmonicity of the trap potential, we either selectively remove the most energetic trapped atoms or excite those at the bottom of the trap by tuning the parametric modulation frequency. This process, which had been previously identified as a possible source of heating, also appears to be a robust way for forcing evaporative cooling in anharmonic traps

    Λ{\Lambda}-enhanced grey molasses on the D2D_2 transition of Rubidium-87 atoms

    Full text link
    Laser cooling based on dark states, i.e. states decoupled from light, has proven to be effective to increase the phase-space density of cold trapped atoms. Dark-states cooling requires open atomic transitions, in contrast to the ordinary laser cooling used for example in magneto-optical traps (MOTs), which operate on closed atomic transitions. For alkali atoms, dark-states cooling is therefore commonly operated on the D1D_1 transition nS1/2→nP1/2n S_{1/2}\rightarrow n P_{1/2}. We show that, for 87Rb^{87}\text{Rb}, thanks to the large hyperfine structure separations the use of this transition is not strictly necessary and that ""quasi-dark state"" cooling is efficient also on the D2D_2 line, 5S1/2→5P3/25 S_{1/2}\rightarrow 5 P_{3/2}. We report temperatures as low as (4.0±0.3) μ(4.0\pm 0.3)\,\muK and an increase of almost an order of magnitude in the phase space density with respect to ordinary laser sub-Doppler cooling

    Decay of persistent currents in annular atomic superfluids

    Full text link
    We investigate the role of vortices in the decay of persistent current states of annular atomic superfluids by solving numerically the Gross-Pitaevskii equation, and we directly compare our results with experimental data from Ref. [1]. We theoretically model the optical phase-imprinting technique employed to experimentally excite finite-circulation states in Ref. [1] in the Bose-Einstein condensation regime, accounting for imperfections of the optical gradient imprinting profile. By comparing simulations of this realistic protocol to an ideal imprinting, we show that the introduced density excitations arising from imperfect imprinting are mainly responsible for limiting the maximum reachable winding number wmaxw_\mathrm{max} in the superfluid ring. We also investigate the effect of a point-like obstacle with variable potential height V0V_0 onto the decay of circulating supercurrents. For a given obstacle height, a critical circulation wcw_c exists, such that for an initial circulation w0w_0 larger than wcw_c the supercurrent decays through the emission of vortices, which cross the superflow and thus induce phase slippage. Higher values of the obstacle height V0V_0 further favour the entrance of vortices, thus leading to lower values of wcw_c. Furthermore, the stronger vortex-defect interaction at higher V0V_0 leads to vortices that propagate closer to the center of the ring condensate. The combination of both these effects leads to an increase of the supercurrent decay rate for increasing w0w_0, in agreement with experimental observations. [1]: G. Del Pace, et al., Phys. Rev. X 12, 041037 (2022

    Accurate near-threshold model for ultracold KRb dimers from interisotope Feshbach spectroscopy

    Full text link
    We investigate magnetic Feshbach resonances in two different ultracold K-Rb mixtures. Information on the K(39)-Rb(87) isotopic pair is combined with novel and pre-existing observations of resonance patterns for K(40)-Rb(87). Interisotope resonance spectroscopy improves significantly our near-threshold model for scattering and bound-state calculations. Our analysis determines the number of bound states in singlet/triplet potentials and establishes precisely near threshold parameters for all K-Rb pairs of interest for experiments with both atoms and molecules. In addition, the model verifies the validity of the Born-Oppenheimer approximation at the present level of accuracy.Comment: 9 pages, 7 figure

    Feshbach resonances in ultracold K(39)

    Full text link
    We discover several magnetic Feshbach resonances in collisions of ultracold K(39) atoms, by studying atom losses and molecule formation. Accurate determination of the magnetic-field resonance locations allows us to optimize a quantum collision model for potassium isotopes. We employ the model to predict the magnetic-field dependence of scattering lengths and of near-threshold molecular levels. Our findings will be useful to plan future experiments on ultracold potassium atoms and molecules.Comment: 7 pages, 6 figure

    Universal Spin Transport in a Strongly Interacting Fermi Gas

    Get PDF
    Transport of fermions is central in many elds of physics. Electron transport runs modern technology, de ning states of matter such as superconductors and insulators, and electron spin, rather than charge, is being explored as a new carrier of information [1]. Neutrino transport energizes supernova explosions following the collapse of a dying star [2], and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe [3]. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics [4, 5]. It has been established that even above the super uid transition such gases ow as an almost perfect uid with very low viscosity [3, 6] when interactions are tuned to a scattering resonance. However, here we show that spin currents, as opposed to mass currents, are maximally damped, and that interactions can be strong enough to reverse spin currents, with opposite spin components reflecting off each other. We determine the spin drag coefficient, the spin di usivity, and the spin susceptibility, as a function of temperature on resonance and show that they obey universal laws at high temperatures. At low temperatures, the spin di usivity approaches a minimum value set by ħ/m, the quantum limit of di usion, where ħ is the reduced Planck's constant and m the atomic mass. For repulsive interactions, our measurements appear to exclude a metastable ferromagnetic state [7{9].National Science Foundation (U.S.)United States. Office of Naval ResearchUnited States. Army Research Office (DARPA OLE programme)Alfred P. Sloan FoundationUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research InitiativeUnited States. Army Research Office. Multidisciplinary University Research InitiativeUnited States. Defense Advanced Research Projects Agency. Young Faculty AwardDavid & Lucile Packard Foundatio

    Shielding of optical pulses on hydrodynamical time scales in laser-induced breakdown of saline water

    Get PDF
    Pulse shielding in Laser-Induced Breakdown of saline water on hydrodynamic time scales is experimentally characterized. Pairs of pulses from a Nd:YAG laser are focused into saline water with a controlled time delay between them. The Laser-Induced Breakdown produced by the first pulse creates a cavitation bubble that later collapses generating a plume of bubbles that evolves on hydrodynamic time scales. When the second pulse arrives, the light is scattered by this plume with a consequent reduction in the intensity at the focal spot resulting in a lower breakdown efficiency of this pulse. By means of acoustic measurements, we determine the breakdown energy threshold for the first pulse and characterize the shielding of the second pulse as a function of the salinity of the solution, the energy of the pulse, and the inter-pulse interval. A model for the blocking process that takes into account both linear and nonlinear absorption along the path is developed which satisfactorily explains the observations. © 2014 AIP Publishing LLC.We acknowledge technical support from Dr. Luca Furfaro (U. du Franche-Compté), and funding from the Direcció General de Recerca, Desenvolupament Tecnològic i Innovació de la Conselleria d'Innovació, Interior i Justícia del Govern de les Illes Balears co-funded by the European Union FEDER funds. J.J. acknowledges financial support from the Ramon y Cajal fellowship. F. Marino acknowledges partial financial support from UIBPeer Reviewe
    corecore