456 research outputs found

    Liquid and vapour phase of lavandin (Lavandula Ă— intermedia) essential oil: chemical composition and antimicrobial activity

    Get PDF
    Essential oils from Lavandula genus and the obtained hybrids are widely used for different purposes such as perfume production in the cosmetic field and for its biological properties. This is the first study on the liquid and vapour phase of Lavandula × intermedia “Grosso” essential oil grown in the Lazio Region, Italy, investigated using headspace coupled to gas chromatography and mass spectrometry (HS-GC/MS). The results showed the most abundant components were linalool and linalyl acetate, followed by 1,8-cineole and terpinen-4-ol, while lavandulyl acetate and borneol were identified as minor compounds, maintaining the same proportion in both the liquid and vapour phase. Furthermore, we tested lavandin liquid and vapour phase essential oil on gram-negative bacteria (Escherichia coli, Acinetobacter bohemicus, and Pseudomonas fluorescens) and gram-positive bacteria (Bacillus cereus and Kocuria marina)

    Experimental study aimed at highlighting warnings for proper design, construction and control of geocomposite-reinforced asphalt pavements

    Get PDF
    The proper use of interlayers in asphalt pavements can be an effective and economic option to enhance their service life. However, the presence of a foreign element at the interface should be properly taken into account during design, construction and control of reinforced pavements. Given this background, the present laboratory study investigated stiffness and interface bonding properties of reinforced asphalt systems in order to achieve fundamental information for a correct design as well as proper construction and control of reinforced pavements. To accomplish this objective, different composite reinforcements (grids/fabrics embedded in bituminous membranes) were studied as interlayers of double-layered systems prepared with both traditional and polymer-modified asphalt concretes. Dynamic flexural tests and static interface shear tests were carried out. Unreinforced reference systems was also studied for comparison purposes. Results confirmed the abovementioned warnings that will allow delineating some preliminary guidelines related to the use of reinforcements in pavements

    Aesthetic and Mechanical Suitability of a Clear Synthetic Resin as a Unconventional Binder for Road Pavements

    Get PDF
    Current environmental awareness interests several aspects of civil engineering, including road construction. Indeed, new challenges related to environmental pollution and landscape preservation must be faced. In this sense, clear road pavement surfaces represent an effective technology aimed at guaranteeing environmental-friendly aesthetic pavements. The use of clear synthetic resin as a binder involves several benefits for the mitigation of in-service reached temperatures and the heat distribution within pavements (with appreciable effects on pavement mechanical performance too). The present paper illustrates an experimental study aimed at analysing the chromatic and mechanical properties of a clear synthetic resin and thus its suitability as a binder for road pavement mixes. Chromatic characteristics were assessed through digital image analysis at different aging conditions. A dynamic shear rheometer was used to evaluate the linear viscoelastic properties as well as fatigue and rutting potential of the binder in a wide range of temperatures and frequencies. A conventional 35/50 penetration grade bitumen was also investigated for comparison purposes. The clear resin exhibited limited changes in colour (darkening effects), mainly in the case of short-term aging. On the other hand, a low temperature-dependency of such a binder was observed up to 58\ub0C. Slightly increased aptitude to rutting at the higher temperatures was detected, even if it is worth noting that clear in-service mixtures would achieve lower temperatures than traditional "black" materials at a given environmental condition (air temperature, solar radiation, etc.). The resin also exhibited a softer behaviour, along with an enhanced fatigue resistance. Overall, the studied innovative binder showed promising results in view of its effective use in road paving

    Steel slag as valuable aggregate in eco\u2013friendly mixtures for asphalt pavements

    Get PDF
    Research and application concerning the use of environmentally friendly materials and technologies in road pavements have reached high relevance mainly due to the increasing public consciousness addressed to environmental protection and preservation. In this sense, the possible use of steel slags for construction applications (including road pavements) has a strategic importance to convert a waste into a valuable resource, taking also into account that ferrous slag may have a lower potential to negatively impact the environment. The environmental sustainability of asphalt mixtures prepared with steel slags can be further enhanced adopting the so-called Warm Mix Asphalt (WMA) technology. In fact, WMA is an asphalt concrete modified with additives that can be produced and applied at lower temperatures than the traditional Hot Mix Asphalt (HMA), thus reducing energy consumption, gas and fume emissions. Given this background, the paper illustrates a part of a wide research study aimed at verifying the utilization feasibility of steel slags in warm asphalt concretes. In particular, midrange and high-service temperature properties as well as water susceptibility of warm mixtures containing steel slags were assessed in the laboratory. The warm modification was performed using a chemical tensoactive additive, whereas slags were taken from a metallurgical plant equipped with an electric arc furnace (EAF). A WMA prepared with only natural aggregates was also studied for comparison purpose. The performance characterization was carried out through both static and cyclic laboratory tests. The results mainly showed that asphalt mixtures prepared combining chemical warm technology and EAF steel slag aggregates demonstrate promising field applicability

    Deletion of the mitochondria-shaping protein Opa1 during early thymocyte maturation impacts mature memory T cell metabolism

    Get PDF
    Optic atrophy 1 (OPA1), a mitochondria-shaping protein controlling cristae biogenesis and respiration, is required for memory T cell function, but whether it affects intrathymic T cell development is unknown. Here we show that OPA1 is necessary for thymocyte maturation at the double negative (DN)3 stage when rearrangement of the T cell receptor β (Tcrβ) locus occurs. By profiling mitochondrial function at different stages of thymocyte maturation, we find that DN3 cells rely on oxidative phosphorylation. Consistently, Opa1 deletion during early T cell development impairs respiration of DN3 cells and reduces their number. Opa1-deficient DN3 cells indeed display stronger TCR signaling and are more prone to cell death. The surviving Opa1-/- thymocytes that reach the periphery as mature T cells display an effector memory phenotype even in the absence of antigenic stimulation but are unable to generate metabolically fit long-term memory T cells. Thus, mitochondrial defects early during T cell development affect mature T cell function

    Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart

    Get PDF
    Experimental data suggest that cell-based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit+ CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild-type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate 'cardiospheres', a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit+ CSCs

    Van der Waals and electrostatic interactions in crystals

    Full text link

    Apoptotic effects on HL60 human leukaemia cells induced by lavandin essential oil treatment

    Get PDF
    Recent scientific investigations have reported a number of essential oils to interfere with intracellular signalling pathways and to induce apoptosis in different cancer cell types. In this paper, Lavandin Essential Oil (LEO), a natural sterile hybrid obtained by cross-breeding L. angustifolia Ă— L. latifolia, was tested on human leukaemia cells (HL60). Based on the MTT results, the reduced cell viability of HL60 cells was further investigated to determine whether cell death was related to the apoptotic process. HL60 cells treated for 24 h with LEO were processed by flow cytometry, and the presence of Annexin V was measured. The activation of caspases-3 was evaluated by western blot and immunofluorescence techniques. Treated cells were also examined by scanning and transmission electron microscopy to establish the possible occurrence of morphological alterations during the apoptotic process. LEO main compounds, such as linalool, linalyl acetate, 1,8-cineole, and terpinen-4-ol, were also investigated by MTT and flow cytometry analysis. The set of obtained results showed that LEO treatments induced apoptosis in a dose-dependent, but not time-dependent, manner on HL60 cells, while among LEO main compounds, both terpinen-4-ol and linalyl acetate were able to induce apoptosis

    Two-steps versus one-step solidification pathways of binary metallic nanodroplet

    Get PDF
    The solidification of AgCo, AgNi, and AgCu nanodroplets is studied by molecular dynamics simulations in the size range of 2-8 nm. All these systems tend to phase separate in the bulk solid with surface segregation of Ag. Despite these similarities, the simulations reveal clear differences in the solidification pathways. AgCo and AgNi already separate in the liquid phase, and they solidify in configurations close to equilibrium. They can show a two-step solidification process in which Co-/Ni-rich parts solidify at higher temperatures than the Ag-rich part. AgCu does not separate in the liquid and solidifies in one step, thereby remaining in a kinetically trapped state down to room temperature. The solidification mechanisms and the size dependence of the solidification temperatures are analyzed, finding qualitatively different behaviors in AgCo/AgNi compared to AgCu. These differences are rationalized by an analytical model
    • …
    corecore