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ABSTRACT 

 

 

Research and application concerning the use of environmentally friendly materials and 

technologies in road pavements have reached high relevance mainly due to the 

increasing public consciousness addressed to environmental protection and 

preservation. In this sense, the possible use of steel slags for construction applications 

(including road pavements) has a strategic importance to convert a waste into a valuable 

resource, taking also into account that ferrous slag may have a lower potential to 

negatively impact the environment. The environmental sustainability of asphalt 

mixtures prepared with steel slags can be further enhanced adopting the so-called Warm 

Mix Asphalt (WMA) technology. In fact, WMA is an asphalt concrete modified with 

additives that can be produced and applied at lower temperatures than the traditional 

Hot Mix Asphalt (HMA), thus reducing energy consumption, gas and fume emissions. 

Given this background, the paper illustrates a part of a wide research study aimed at 

verifying the utilization feasibility of steel slags in warm asphalt concretes. In 

particular, midrange and high-service temperature properties as well as water 

susceptibility of warm mixtures containing steel slags were assessed in the laboratory. 

The warm modification was performed using a chemical tensoactive additive, whereas 

slags were taken from a metallurgical plant equipped with an electric arc furnace (EAF). 

A WMA prepared with only natural aggregates was also studied for comparison 

purpose. The performance characterization was carried out through both static and 

cyclic laboratory tests. The results mainly showed that asphalt mixtures prepared 

combining chemical warm technology and EAF steel slag aggregates demonstrate 

promising field applicability.  
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INTRODUCTION 

 

Research and application concerning the use of environmentally friendly materials and 

technologies in road pavements have reached high relevance mainly due to the 

increasing public consciousness addressed to environmental protection and 

preservation. In this sense, the possible use of steel slags for construction applications 

(including road pavements) has a strategic importance in order to convert a waste into 

a valuable resource, taking also into account that ferrous slag may have a lower 

potential to negatively impact the environment. Slag is a waste product derived from 

the metallurgical manufacturing processes that results in a quite variable composition 

depending on the original ferrous/non-ferrous ores and the production technique from 

which is generated. In particular, Electric Arc Furnace (EAF) slag is widely diffused in 

several countries throughout the world, with million tons produced every year (Motz 

and Geiseler, 2001; Jullien et al, 2010; Piatak et al, 2014). It is generated from iron 

melted scrap impurities, during steel production processes inside the electric arc furnace 

and is generally characterized by a lower content of free magnesium and calcium oxides 

than other steel slag types. EAF large availability and physical-mechanical properties 

(high roughness, shape, hardness and specific weight) make it suitable to be used as 

aggregate in civil constructions and often utilized in road pavements (Emery, 1984; 

Asi, 2007; Yildirim and Prezzi, 2011; Yi et al, 2012; Piatak et al, 2014). In this sense, 

several literature studies reported improved mechanical properties and durability of 

asphalt mixtures thanks to the use of EAF steel slag aggregates (Pasetto and Baldo, 

2010; Pasetto and Baldo, 2011; Pasetto and Baldo, 2012; Oluwasola et al, 2016; Sayadi 

and Hesami, 2017). Indeed, some drawbacks have been also reported due to the use of 

such material in road pavements. As an example, steel slag could manifest volumetric 

instability and volume increase with water because of the presence of unstable phases 

in its mineralogy (Emery, 1984; Sofilic et al, 2010; Yildirim and Prezzi, 2011) (even if 

it has been demonstrated that the use of steel slag in asphalt mixtures could limit the 

potential expansion). Thus, an aging period (at least 2-3 months) prior to its use is 

advisable to minimize subsequent volumetric changes due to oxidation (Wu et al, 2007; 

Sorlini et al, 2012). Furthermore, different studies demonstrated that the release of 

pollutants by leaching is not negligible (Sofilic et al, 2010; Sorlini et al, 2012) 

(however, it generally meets environmental requirements established in different 

countries). Otherwise, the environmental sustainability of asphalt mixture can be 

further enhanced thanks to the combination of recycled/waste materials and the warm 

technology. Moreover, chemical warm modification could be a successful way to 

enhance the chemical affinity between bitumen and steel slag (low bitumen-EAF 

compatibility was evinced in a previous study by Pasetto et al, 2015). Warm Mix 

Asphalt (WMA) is a cleaner asphalt concrete characterized by lower production and 

application temperatures (100–140 °C) than traditional Hot Mix Asphalt (HMA), which 

requires high production temperatures (>150 °C). Although reduced mixing and 

compaction temperatures could also lead to possible drawbacks mainly related to 

greater moisture susceptibility, coating and bonding problems, reduced interface shear 

strength and higher rutting potential (Mo et al, 2012; Morea et al, 2012; Zhao et al, 

2012; Sanchez-Alonso et al, 2013; Pasquini et al, 2015), WMA represents a consolidate 

literature topic and a quite diffused technology. According to wide literature part 

(D’Angelo et al, 2008; Capitao et al, 2012; Rubio et al, 2012; Kheradmand et al, 2014), 

warm mix asphalt can be obtained by using organic (wax), chemical or foaming 

additives achieving relevant environmental benefits (reduced energy consumption, gas 

and fume emissions) and/or some economic/operational advantages (lower production 



costs, longer hauling distances and extended construction periods). Chemical additives 

represent the most recent WMA technology usually consisting of a package of products 

(emulsification agents, surfactants, polymers, additives and adhesion promoters). These 

additives should be able to allow lower mixing and compaction temperatures thanks to 

the reduced friction at the interface between bitumen and aggregates without affecting 

viscosity and performance grade of the binder (Mo et al, 2012; Morea et al, 2012; Xiao 

et al, 2012; Pasetto et al, 2015). This could be accomplished thanks to the presence of 

surfactants, which should reduce the surface tension of the asphalt binder acting as an 

emulsifier and thus increasing lubricity (D’Angelo et al, 2008). Several experimental 

studies seem to confirm that chemically additived warm mix asphalts are characterized 

by slightly higher workability than the corresponding HMAs (Hurley and Prowell, 

2006; Sanchez-Alonso et al, 2011; Oliveira et al, 2013; Pasetto et al, 2015; Sol-Sanchez 

et al, 2016). Given this background, the paper herein deals with an experimental 

characterization aimed at assessing performance of warm mix asphalt containing EAF 

steel slags in comparison with a limestone aggregate WMA, particularly in terms of 

stiffness, fatigue resistance, rutting potential and moisture susceptibility. 

 

MATERIALS AND TEST METHODS 

 

Materials 

 

Asphalt mixtures were obtained in the laboratory utilizing a warm binder achieved 

modifying a traditional plain binder (35/50 penetration grade) with a commercial 

viscous liquid chemical additive (dosed at 0.5 % by weight of the binder, according to 

the producer recommendations). Bitumen and additive were blended with a portable 

equipment operating at high stirring rates at temperature of 150 °C. Basic properties of 

the studied binders can be found elsewhere (Pasetto et al, 2016). Two types of dense 

graded asphalt mixtures were prepared combining the warm binder with crushed 

limestone aggregates (mix hereafter coded WLM) and EAF steel slags (mix hereafter 

named WSM). WLM was produced with total utilization of limestone aggregate 

whereas WSM included also steel slags (40 % EAF steel slag by total weight of 

aggregate). Steel slags filler was excluded since it is known that higher specific weight 

of slag could negatively affect material’s transportation costs (Washington State DOT, 

2015). Main physical and mechanical properties of utilized aggregates are shown in 

Table 1 whereas chemical composition of limestone and EAF steel slag are given in 

Table 2. 

 

Table 1. Basic physical and mechanical properties of limestone and EAF slag  

Property Standard Unit 
 Limestone  Steel slag 

 12/20 8/12 4/8 0/4  8/12 4/8 0/4 

Particle density EN 1097-6 g/cm3  2.71 2.74 2.75 2.76  3.90 3.89 3.80 

Los Angeles coeff. EN 1097-2 %  - 16.0 - -  12.4 - - 

Shape index EN 933-4 %  10.5 7.5 12.8 -  4.2 7.8 - 

Flakiness index EN 933-3 %  13.8 11.8 10.5 -  4.5 8.3 - 

Sand equivalent EN 933-8 %  - - - 78.0  - - 92.0 

 

With the purpose to ensure similar coating of mixes and reduce the variables accounted 

during the laboratory comparison, materials were prepared taking into account the 

different specific gravities of aggregates and maintaining constant the volumetric 

proportion within gradations and bitumen contents. Thus, WLM mix was previously 

designed with a skeleton fulfilling typical technical specifications for wearing courses 



and a bitumen content of 5.5 % (resulted after a preliminar mix design). Then, WSM 

was mixed using an equal bitumen content of about 15 % by volume, which 

corresponds to a 4.9 % content by weight of aggregates. Table 3 presents the used 

fractions gradations for WLM and WSM mixtures. 

 

Table 2. Chemical compositions of studied aggregates 

Oxide content, % 
 Filler type 

 Limestone  Steel Slag 

MgO  2.50  3.65 

Al2O3  1.00  9.30 

SiO2  3.34  13.02 

CaO  52.71  29.60 

TiO2  -  0.35 

Cr2O3  -  4.03 

MnO  -  5.09 

FeO  0.39  32.84 

 

Table 3. Design volumetric mixture gradations and binder contents  

Sieve, mm 
Passing, % (volumetric) 

 WLM  WSM 

20  100.0  100.0 

14  96.5  95.9 

10  87.1  84.0 

6.3  62.4  63.8 

2  28.9  30.5 

0.5  17.7  17.8 

0.25  14.5  14.4 

0.063  9.0  8.8 

Binder content, % (volumetric)  14.8  14.9 

 

Compactions were carried out through 100 gyrations of a Superpave gyratory 

compactor, assuming a target of 3 % air void content and producing 150-mm diameter 

cylindrical specimens. Later, specimens for laboratory tests (with approximate heights 

of 65 mm) were realized sawing the compacted samples. 

 

Test methods 

 

As anticipated, experimental characterization was planned to assess materials 

performance in terms of stiffness, fatigue resistance and rutting potential, particularly 

with the purpose to identify the contribution of steel slag in warm asphalt mixes. 

Moisture susceptibility was then evaluated through indirect tensile strength ratio. The 

assessment of stiffness characteristics was achieved by non-destructive Indirect Tensile 

Stiffness Modulus (ITSM) tests performed at the temperature of 20 °C through a 

dynamic equipment (according with EN 12697-26/Annex C). After a conditioning 

period of at least four hours at the test temperature, eight cylindrical specimens were 

tested for WLM and WSM mixtures, applying five load pulses in strain-controlled 

mode. A suitable load actuator applied the load pulses while the corresponding 

horizontal deformation was measured through two linear variable displacement 

transducers mounted opposite one another in a rigid frame clamped to the specimen. A 

rise time (time for applying the load from zero to load peak) of 124 ms and a target 

peak horizontal deformation of 5 µm were selected according to standard. The 

Poisson’s ratio was assumed equal to 0.35. Fatigue resistances were evaluated with 

repeated Indirect Tensile Fatigue (ITF) tests through a dynamic equipment (according 



to the British standard BS DD ABF), applying cyclic load pulses with a repetition 

period of 1.5 s in stress-controlled mode along the vertical diameter of the specimens. 

ITF tests were executed at 20 °C with a rise time of 124 ms, with the application of five 

different stress levels from 300 kPa to 500 kPa, in order to construct the fatigue curves 

(by regression analysis of data, using a power law). Five repetitions for each mixture 

were executed, assuming as fatigue failure criterion the number of cycles corresponding 

to the complete fracture of specimens. Experimental data were finally arranged in bi-

logarithmic plot reporting the initial horizontal tensile strains as a function of the 

number of cycles to failure and thus obtaining the fatigue lines. Confined Repeated 

Load Axial (RLA) tests were carried out to evaluate rutting potential of materials (EN 

12697-25/Method A). Three replicates for each mix were executed at 40 °C after a 

conditioning period of at least four hours at the selected temperature. Confinement was 

reproduced loading the 150-mm diameter cylindrical specimens with an upper plate 

having a diameter of 100 mm (the “ring” of the material not directly loaded simulated 

the confining action replicating field conditions). 3600 cyclical loading pulses with a 

block-pulse frequency of 0.5 Hz (1 s loading time and 1 s rest period) and a stress level 

of 100 kPa were applied according to the standard procedure. The evolution of the 

cumulative axial strain as a function of the number of loading cycles typically shows a 

first phase with a decreasing creep rate (i.e. slope of the curve) and a second phase with 

a quasi-constant creep rate. Complying the European standard, rutting potential was 

estimated in terms of creep rate of the quasi-linear part of the curve.  Such a steady state 

was located over the final 2400 loading cycles. Finally, moisture susceptibility of 

mixtures was estimated with the calculation of indirect tensile strength ratio – ITSR 

(EN12697-23) which represented the parameter decrease of wet conditioned samples 

with respect to un-conditioned dry ones. Dry and wet ITS tests were executed at 25 °C. 

Conditioning procedure was performed according to ASTM D4867/D standard: 

cylindrical specimens were exposed to a single freeze-thawing cycle constituted by a 

first phase of cooling (-18.0 ± 2.0 °C for at least 15 hours) and a second phase of soaking 

in water bath at the temperature of 60.0 ± 1.0 °C for 24 hours. 

 

RESULTS AND DISCUSSION 

 

Concerning mixture stiffness, modulus results are presented in Table 4 along with the 

corresponding standard deviations. It can be observed that the inclusion of EAF steel 

slag hard aggregates led to a positive slight increase in stiffness modulus, similarly to 

that found by other researchers (Motz and Geiseler, 2001; Pasetto and Baldo, 2011; 

Pasetto and Baldo, 2012; Yi et al, 2012; Ameri et al, 2013). Moreover, stiffness values 

resulted satisfactory with respect to typical technical specifications. In addition, it has 

to be remembered that WSM mix was prepared without specific mix-design (utilizing 

that of WLM in order to avoid the introduction of supplementary variables). Thus, 

specific mix-design for EAF mixture could suggest further improvements in stiffness 

with respect to that of the control one. 

 

Table 4. Indirect tensile stiffness test results at 20 °C  
Mixture Mean ITSM, MPa Std. dev., MPa 

WLM 4865 390 

WSM 5161 469 

 

Figure 1 reports the fatigue curves constructed on the basis of the obtained experimental 

data carrying out stress-controlled dynamic tests in indirect tensile configuration. It is 



plotted in terms of initial strain level (strain of the undamaged specimens, i.e. the ratio 

between applied stress and initial stiffness modulus) versus the corresponding number 

of cycles to failure. According with literature (Goli et al, 2017), performance of the 

steel slag mixtures (WSM) were found to be slightly lower than that of the 

corresponding material prepared with mineral aggregates (WLM), probably because of 

the higher stiffening effect provided by the finer part of slag aggregate (i.e. 0/4 mm) 

that led to higher brittleness of the bituminous mortar. These findings seem confirmed 

by the strain level corresponding to a fatigue life of 106 loading cycles (ε6) which can 

be calculated from the fatigue curves (EN 12697-24). A ε6 value equal to 69 μstrain 

was obtained for the WSMs, whereas warm mixes WLM achieved a higher ε6 value (83 

μstrain). 

Rutting potential results are shown in Figure 2. Generally, it is possible to assert that, 

despite the addition of EAF steel slag aggregates, all mixtures exhibited virtually no 

deformation (<0.6 %) at the end of the test (i.e. the test was partially unable to cause 

substantial damage to differentiate mixture performance). However, WSM exhibited 

slightly greater permanent deformations (higher final strain and creep rate) than those 

of WLM. This seems to be in accordance with other researches that reported higher 

rutting potential in the case of EAF steel slag presence in asphalt mixtures (Ameri et al, 

2017). Otherwise, as previously anticipated, a specific mix-design could eventually 

suggest further improvements in warm mix performance.  

With respect to the moisture susceptibility of mixes, Figure 3 exposes ITSR (ratio 

between indirect tensile strength before and after samples conditioning through a wet 

freeze-thawing cycle). It is interesting to note the comparable dry ITS value between 

the tested mixtures, but also the slight decrease in durability for EAF steel slag one 

(lower ITSR). This can be ascribed to the above cited low chemical bitumen-slag 

affinity, due to the lower alkalinity (i.e. CaO/SiO2 ratio) of slag responsible of weaker 

adhesion, cohesion and bonding strength (Pasetto et al, 2015). Otherwise, ITSR values 

always resulted satisfactory, since literature reported that tensile strength ratios less 

than 70 % indicate moisture susceptible mixtures, whereas ITS ratios greater than 70 

% denote substantial resistance to moisture damage (Kennedy and Anangos, 1984). 

 

 

Figure 1. Fatigue curves at 20 °C 
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Figure 2. Rutting potential at 40 °C 

 

 

Figure 3. Moisture susceptibility – Indirect tensile strength ratios at 25 °C 

 

CONCLUSIONS 

 

The present paper concerns the feasibility of utilizing electric arc furnace steel slag 

aggregates in chemical modified warm asphalt mixtures. The main conclusions of such 

research can be summarized as follows: 

 EAF steel slag aggregates lead to a positive increase in stiffness modulus of 

WMA, probably because of its higher physical-mechanical properties (high 

hardness, roughness and angularity); 

 fatigue resistance of WMA mixture with slags is slightly lower than that of the 

corresponding material prepared with mineral aggregates (WLM), probably 

because of the higher stiffening effect provided by the finer part of slag 

aggregate (i.e. 0/4 mm) that led to higher brittleness of the bituminous mortar; 

 despite a slightly increase in rutting potential, the EAF steel slag addition in 

WMA guarantees negligible final permanent deformations and creep rate; 

 slightly higher moisture sensitivity for EAF-WMA mixture was evinced. This 

can be probably ascribed to low chemical bitumen-slag affinity, due to the lower 

alkalinity of slag responsible of weaker adhesion, cohesion and bonding 

strength. Otherwise, moisture ratios always result satisfactory. 
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Overall, performance of warm mixtures resulted satisfactory with respect to typical 

technical prescriptions. In addition, specific mix-design for chemically additived mixes 

with steel slags (not performed to avoid the introduction of supplementary variables) 

could suggest further performance improvements with respect to the limestone control 

ones. Based on these promising findings, further specific studies for the execution of 

dynamic tests at laboratory scale, as well as field testing and validation, should be 

promoted. 
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