292 research outputs found

    CNO Ship Availability Maintenance Team Workload and Manning

    Get PDF
    NPS NRP Executive SummaryThis project conducts a lean systems engineering assessment of the foundations of CNO availabilities. Specifically, it develops process representations of the components of both Availability Duration Scorecards (ADSs) and Availability Duration Projections (ADPs) and conducts quantitative assessments of the major aspects of CNO availabilities that may result in inaccurate estimates of maintenance durations. This research explores the major drivers of availability durations, with specific focus on maintenance manning and maintenance workload. The analysis will identify the primary drivers of availability duration overruns, to include an assessment of items that may not be captured in existing ADSs and ADPs, and highlight opportunities to modify future availability duration projections to improve accuracy and thereby aid scheduling, budgeting, and workload decision making.Naval Sea Systems Command (NAVSEA)ASN(RDA) - Research, Development, and AcquisitionThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    CNO Ship Availability Maintenance Team Workload and Manning

    Get PDF
    NPS NRP Project PosterThis project conducts a lean systems engineering assessment of the foundations of CNO availabilities. Specifically, it develops process representations of the components of both Availability Duration Scorecards (ADSs) and Availability Duration Projections (ADPs) and conducts quantitative assessments of the major aspects of CNO availabilities that may result in inaccurate estimates of maintenance durations. This research explores the major drivers of availability durations, with specific focus on maintenance manning and maintenance workload. The analysis will identify the primary drivers of availability duration overruns, to include an assessment of items that may not be captured in existing ADSs and ADPs, and highlight opportunities to modify future availability duration projections to improve accuracy and thereby aid scheduling, budgeting, and workload decision making.Naval Sea Systems Command (NAVSEA)ASN(RDA) - Research, Development, and AcquisitionThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Thermodynamics of quantum dissipative many-body systems

    Full text link
    We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas for thermodynamic quantities are derived for the case of many degrees of freedom, with general kinetic and dissipative quadratic forms. The underlying scheme is the pure-quantum self-consistent harmonic approximation (PQSCHA), equivalent to the variational approach by the Feynman-Jensen inequality with a suitable quadratic nonlocal trial action. A low-coupling approximation permits to get manageable PQSCHA expressions for quantum thermal averages with a classical Boltzmann factor involving an effective potential and an inner Gaussian average that describes the fluctuations originating from the interplay of quanticity and dissipation. The application of the PQSCHA to a quantum phi4-chain with Drude-like dissipation shows nontrivial effects of dissipation, depending upon its strength and bandwidth.Comment: ReVTeX, 12 pages, 9 embedded figures (vers.2: typo mistake fixed

    Two fermion relativistic bound states: hyperfine shifts

    Full text link
    We discuss the hyperfine shifts of the Positronium levels in a relativistic framework, starting from a two fermion wave equation where, in addition to the Coulomb potential, the magnetic interaction between spins is described by a Breit term. We write the system of four first order differential equations describing this model. We discuss its mathematical features, mainly in relation to possible singularities that may appear at finite values of the radial coordinate. We solve the boundary value problems both in the singular and non singular cases and we develop a perturbation scheme, well suited for numerical computations, that allows to calculate the hyperfine shifts for any level, according to well established physical arguments that the Breit term must be treated at the first perturbative order. We discuss our results, comparing them with the corresponding values obtained from semi-classical expansions.Comment: 16 page

    Quantum thermodynamics of systems with anomalous dissipative coupling

    Full text link
    The standard {\em system-plus-reservoir} approach used in the study of dissipative systems can be meaningfully generalized to a dissipative coupling involving the momentum, instead of the coordinate: the corresponding equation of motion differs from the Langevin equation, so this is called {\em anomalous} dissipation. It occurs for systems where such coupling can indeed be derived from the physical analysis of the degrees of freedom which can be treated as a dissipation bath. Starting from the influence functional corresponding to anomalous dissipation, it is shown how to derive the effective classical potential that gives the quantum thermal averages for the dissipative system in terms of classical-like calculations; the generalization to many degrees of freedom is given. The formalism is applied to a single particle in a double-well and to the discrete ϕ4\phi^4 model. At variance with the standard case, the fluctuations of the coordinate are enhanced by anomalous dissipative coupling.Comment: 12 pages, 5 figures, to be published in Phys. Rev.

    Perturbation Theory for Metastable States of the Dirac Equation with Quadratic Vector Interaction

    Full text link
    The spectral problem of the Dirac equation in an external quadratic vector potential is considered using the methods of the perturbation theory. The problem is singular and the perturbation series is asymptotic, so that the methods for dealing with divergent series must be used. Among these, the Distributional Borel Sum appears to be the most well suited tool to give answers and to describe the spectral properties of the system. A detailed investigation is made in one and in three space dimensions with a central potential. We present numerical results for the Dirac equation in one space dimension: these are obtained by determining the perturbation expansion and using the Pad\'e approximants for calculating the distributional Borel transform. A complete agreement is found with previous non-perturbative results obtained by the numerical solution of the singular boundary value problem and the determination of the density of the states from the continuous spectrum.Comment: 10 pages, 1 figur

    Unified covariant treatment of hyperfine splitting for heavy and light mesons

    Get PDF
    This paper aims at proving the fundamental role of a relativistic formulation for quarkonia models. We present a completely covariant description of a two-quark system interacting by the Cornell potential with a Breit term describing the hyperfine splitting. Using an appropriate procedure to calculate the Breit correction, we find heavy meson masses in excellent agreement with experimental data. Moreover, also when applied to light quarks and even taking average values of the running coupling constant, we prove that covariance properties and hyperfine splitting are sufficient to explain the light mesons spectrum and to give a very good agreement with the data.Comment: 4 page

    Quantum effects in a superconducting glass model

    Full text link
    We study disordered Josephson junctions arrays with long-range interaction and charging effects. The model consists of two orthogonal sets of positionally disordered NN parallel filaments (or wires) Josephson coupled at each crossing and in the presence of a homogeneous and transverse magnetic field. The large charging energy (resulting from small self-capacitance of the ultrathin wires) introduces important quantum fluctuations of the superconducting phase within each filament. Positional disorder and magnetic field frustration induce spin-glass like ground state, characterized by not having long-range order of the phases. The stability of this phase is destroyed for sufficiently large charging energy. We have evaluated the temperature vs charging energy phase diagram by extending the methods developed in the theory of infinite-range spin glasses, in the limit of large magnetic field. The phase diagram in the different temperature regimes is evaluated by using variety of methods, to wit: semiclassical WKB and variational methods, Rayleigh-Schr\"{o}dinger perturbation theory and pseudospin effective Hamiltonians. Possible experimental consequences of these results are briefly discussed.Comment: 17 pages REVTEX. Two Postscript figures can be obtained from the authors. To appear in PR

    Kinetic energy of solid neon by Monte Carlo with improved Trotter- and finite-size extrapolation

    Full text link
    The kinetic energy of solid neon is calculated by a path-integral Monte Carlo approach with a refined Trotter- and finite-size extrapolation. These accurate data present significant quantum effects up to temperature T=20 K. They confirm previous simulations and are consistent with recent experiments.Comment: Text and figures revised for minor corrections (4 pages, 3 figures included by psfig
    corecore