77 research outputs found

    Degradation assessment of nuclear power plant extraction steam piping after long term service

    Get PDF
    Degradation due to ageing in a Nuclear Power Plant’s Extraction Steam Piping has been assessed. Samples of twelve years old seamless carbon steel SA 106B pipe have been taken and subjected to metallographic examination, hardness testing, radiographic examination and ultrasonic thickness measurement to investigate and analyze ageing in piping material. Metallographic examination of aged sample revealed irregularly distributed graphite nodules in ferrite grains and on grain boundaries as well, the reduction in pearlite phase has also been observed from 40% to 25%. This Transformation in microstructure has reduced hardness of steel. Reduction in hardness has found 20.4% and 0.7% on inner and outer layer of the pipe material respectively. Corrosion pits having average depth of 0.07 mm have been found on external surface. Radiograph of aged pipe revealed material removal and wall thinning due to erosion on inner surface of pipe. The extent of erosion had been checked, which has found 8.7%

    Association of Circulating Tumor DNA Testing Before Tissue Diagnosis With Time to Treatment Among Patients With Suspected Advanced Lung Cancer: The ACCELERATE Nonrandomized Clinical Trial.

    Get PDF
    IMPORTANCE Liquid biopsy has emerged as a complement to tumor tissue profiling for advanced non-small cell lung cancer (NSCLC). The optimal way to integrate liquid biopsy into the diagnostic algorithm for patients with newly diagnosed advanced NSCLC remains unclear. OBJECTIVE To evaluate the use of circulating tumor DNA (ctDNA) genotyping before tissue diagnosis among patients with suspected advanced NSCLC and its association with time to treatment. DESIGN, SETTING, AND PARTICIPANTS This single-group nonrandomized clinical trial was conducted among 150 patients at the Princess Margaret Cancer Centre-University Health Network (Toronto, Ontario, Canada) between July 1, 2021, and November 30, 2022. Patients referred for investigation and diagnosis of lung cancer were eligible if they had radiologic evidence of advanced lung cancer prior to a tissue diagnosis. INTERVENTIONS Patients underwent plasma ctDNA testing with a next-generation sequencing (NGS) assay before lung cancer diagnosis. Diagnostic biopsy and tissue NGS were performed per standard of care. MAIN OUTCOME AND MEASURES The primary end point was time from referral to treatment initiation among patients with advanced nonsquamous NSCLC using ctDNA testing before diagnosis (ACCELERATE [Accelerating Lung Cancer Diagnosis Through Liquid Biopsy] cohort). This cohort was compared with a reference cohort using standard tissue genotyping after tissue diagnosis. RESULTS Of the 150 patients (median age at diagnosis, 68 years [range, 33-91 years]; 80 men [53%]) enrolled, 90 (60%) had advanced nonsquamous NSCLC. The median time to treatment was 39 days (IQR, 27-52 days) for the ACCELERATE cohort vs 62 days (IQR, 44-82 days) for the reference cohort (P < .001). Among the ACCELERATE cohort, the median turnaround time from sample collection to genotyping results was 7 days (IQR, 6-9 days) for plasma and 23 days (IQR, 18-28 days) for tissue NGS (P < .001). Of the 90 patients with advanced nonsquamous NSCLC, 21 (23%) started targeted therapy before tissue NGS results were available, and 11 (12%) had actionable alterations identified only through plasma testing. CONCLUSIONS AND RELEVANCE This nonrandomized clinical trial found that the use of plasma ctDNA genotyping before tissue diagnosis among patients with suspected advanced NSCLC was associated with accelerated time to treatment compared with a reference cohort undergoing standard tissue testing. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04863924

    Baseline characteristics of patients in the reduction of events with darbepoetin alfa in heart failure trial (RED-HF)

    Get PDF
    &lt;p&gt;Aims: This report describes the baseline characteristics of patients in the Reduction of Events with Darbepoetin alfa in Heart Failure trial (RED-HF) which is testing the hypothesis that anaemia correction with darbepoetin alfa will reduce the composite endpoint of death from any cause or hospital admission for worsening heart failure, and improve other outcomes.&lt;/p&gt; &lt;p&gt;Methods and results: Key demographic, clinical, and laboratory findings, along with baseline treatment, are reported and compared with those of patients in other recent clinical trials in heart failure. Compared with other recent trials, RED-HF enrolled more elderly [mean age 70 (SD 11.4) years], female (41%), and black (9%) patients. RED-HF patients more often had diabetes (46%) and renal impairment (72% had an estimated glomerular filtration rate &#60;60 mL/min/1.73 m2). Patients in RED-HF had heart failure of longer duration [5.3 (5.4) years], worse NYHA class (35% II, 63% III, and 2% IV), and more signs of congestion. Mean EF was 30% (6.8%). RED-HF patients were well treated at randomization, and pharmacological therapy at baseline was broadly similar to that of other recent trials, taking account of study-specific inclusion/exclusion criteria. Median (interquartile range) haemoglobin at baseline was 112 (106–117) g/L.&lt;/p&gt; &lt;p&gt;Conclusion: The anaemic patients enrolled in RED-HF were older, moderately to markedly symptomatic, and had extensive co-morbidity.&lt;/p&gt

    Cultural difference on the table: food and drink and their role in multicultural team performance

    Get PDF
    Multicultural teams are increasingly common and provide a challenge to achieving the integration associated with greater effectiveness. The vague and abstract nature of many definitions of culture can make the difficulties in acknowledging and addressing difference challenging. This longitudinal study of a multicultural team follows the anthropological roots of cultural studies to focus on the material role of food and drink in team development. In an empirical, ethnographically oriented study of a culturally diverse work team over time, we explored the ways that food and drink acted as boundary objects in the processes of integration, differentiation and cultural adaptation and negotiation. By employing the lens of material culture, with its sensory nature and its associations with identity, we also highlight the complexity of cross-cultural interaction, with its possibilities of cooperation, learning, difficulties and resistance, and suggest that food and drink allow a grounded discussion of culture, accommodation and difference. We contribute to the multicultural team literature, emphasizing the roles of materiality, constrained choice and complexity, as well as how these are translated into performance by the generative mechanisms of agency in context. We also identify some specific contributions to practice arising from this research

    Root cause failure analysis of a domestic pressure cooker through metallurgical characterization and computational simulation

    No full text
    Pressure cooker is a closed domestic pressure cooking vessel for use with external heat source and capable of maintaining nominal cooking pressure up to 1.0 kgf/cm2 (100 kN/m2 approximately) gauge nominal. In pressure cookers, despite the development of electronic controllers, the basic edition of such vessels are still equipped with fewer advanced safety functions due to economic constraints. Although the provision of pressure relief valves (PRV) is considered as one of the major protective features, however, pressure cooker failure accidents have been reported frequently. This paper describes the analysis of pressure cooker failure that failed prematurely after 1 year of service considering the design life of > 5 years. It was hypothesized that the root cause of pipe failure was either material degradation from exposure to an aggressive environment or an inherent defect in the pressure cooker. To test this hypothesis, a thorough visual examination of the exhumed failed section and the fracture surface was undertaken, followed by liquid penetrant testing, material identification, hardness testing, and metallographic analysis. Computational models of static and transient loading were also used to determine the stress distribution along the actual geometry of the failed cooker and to understand the main causes of recurrent failures. Visual and macroscale examination revealed significant body deformation at the lower dish-ended shell showing distorted locking grooves. It was also noticed that dirt and food particle, from the earlier cooking, were stuck in the pressure valves orifice. In addition, no evidence of metallurgical defect was observed. The inspection indicated that the cause of failure is primarily due to the choking of pressure relief value (PRV) and overpressure safety valves. Consequently, the pressure release occurred from the sealing side of the top lid, which resulted in its ejection

    Preparation and characterization of sulfur-vinylbenzyl chloride polymer under optimized reaction conditions using inverse vulcanization

    No full text
    Inverse vulcanization offers a new method to make value to this cheap and highly abundant sulfur to produce sulfur-based polymers for different applications. However, most of the research done so far dealt with the characterization of the polymers or their efficiency in certain applications. Here, 4-vinylbenzyl chloride (VBC) is reacted with sulfur under optimized reaction conditions to produce linear sulfur-based polymer. Response Surface Methodology (RSM) is employed to optimize the reaction conditions in terms of reaction temperature, reaction time, and initial sulfur content. The properties of the polymer produced under optimized conditions are then evaluated using proton nuclear magnetic resonance (1H NMR), CHNS elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), powder X-Ray diffraction (PXRD), and field emission scanning electron microscopy (FESEM). The formation of the polymer and full conversion of the monomers were confirmed by NMR and CHNS analysis. The S/VBC polymer showed a uniform morphology and smooth surface. The polymer demonstrated an amorphous structure with a low Tg (3.7 °C), high thermal stability (205 °C), and great stability against depolymerization by time. The S/VBC polymer is significant due to its ability for post-functionalization which makes it possible to introduce new applications to sulfur-based polymers

    Optimization of synthesis of inverse vulcanized copolymers from rubber seed oil using response surface methodology

    No full text
    Optimization of inverse vulcanization reaction conditions was carried out using response surface methodology (RSM) and a quadratic model was proposed to predict the sulfur conversion, to limit the amount of the unreacted sulfur left in the final copolymer of sulfur and rubber seed oil (non-edible vegetable oil) for the very first time. ANOVA analysis revealed the significance of the selected conditions and of all, the initial sulfur content was the most influential parameter. Although process optimization substantially increased the sulfur conversion, but there was still 5.8% unreacted sulfur present as revealed by DSC (differential scanning calorimetry) analysis. Filtration using tetrahydrofuran as solvent was carried out to further remove the sulfur particles from the copolymer, this strategy yields a copolymer with only 0.25% unreacted sulfur. The sulfur conversion was further improved using another strategy involving the addition of 5–10 wt% of 1,3-diisopropenyl benzene (DIB) or 2,4,6-Triallyloxy-1,3,5- triazine (TAC) crosslinker to the reaction mixture. The field emission scanning electron microscopy (FESEM) confirmed the presence of smooth surfaces in the copolymers whereas their amorphous nature was evident from powdered X-ray diffraction (p-XRD) results. The terpolymers were observed to be more thermally stable than the copolymer

    Synthesis and characterization of sustainable inverse vulcanized copolymers from non-edible oil

    No full text
    Inverse vulcanization is a facile solvent-free process, which offers interesting sustainable copolymers from the reaction of sulfur with petro-based monomers or edible vegetable oils. However, sulfur reaction with the former contradicts green chemistry, whereas the latter reduces the viability of the product and can contribute to the food crisis. Herein, we report the preparation of sulfur-based polymer (SBP) by the reaction of rubber seed oil, RSO (a non-edible oil), to produce a sustainable sulfur-based copolymer for the first time. The properties of the new polymer were evaluated using different techniques such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX-mapping), powdered X-ray diffractometer (p-XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The polymer was found to be soluble in tetrahydrofuran, thermally stable to 200 °C, and a low glass transition temperature (−6.41 to −7.85 °C for a polymer with 50 to 70 wt % S). The polymer morphological and DSC analysis demonstrated a uniform surface possessing a small amount of unreacted microscale sulfur particles that is lesser than similar polymers from other oils, which was confirmed by DSC. The P-XRD analysis revealed the amorphous nature of the copolymer caused by a heavily crosslinked structure. The effect of the post-polymerization treatment on the properties of the copolymers was also investigated which revealed that increasing the curing temperature or quenching medium temperature increases the glass transition temperature of the copolymer. The polymer properties were dramatically improved by reducing the amount of the unreacted sulfur by the addition of a small amount of 1,3-diisopropeynyl benzene (crosslinker), leading to 99.75 % sulfur conversion, the highest ever value achieved in such SBPs. It can be concluded that the use of RSO with sulfur enhances the sustainability of SBP and promotes their adding products
    corecore