
Chapter 1
Introduction to Environmental Modelling

Many scholars have defined environmental modelling according to their disciplinary
inclination. For example, DBW (2018) defines environmental modelling as “the
application ofmultidisciplinary knowledge to explain, explore and predict the Earth’s
response to environmental change, both natural and human-induced”. Wiki (2018)
defined environmental modelling as “the creation and use of mathematical models
of the environment. It is generally done either for pure research purposes, or inform
decision making and policy”. FES (2018) defined environmental modelling as the
“modelling of natural processes associated with inanimate nature, such as hydrolog-
ical and hydraulic modelling, modelling of chemical processes and processes in the
atmosphere”. Hauduc et al. (2015) defines environmental modelling as the process
of accounting “for multiple variables and multiple objectives in systems with many
processes occurring at different time scales”. Delft3D (2018) define environmental
modelling as the model that “is based on the transport of substances using the so-
called advection-diffusion equation”. FA (2018) defines environmental modeling as
a model that “focus on only noise or emission outputs that presents a need to better
consider noise, air quality, fuel burn, and greenhouse gas emissions interdependen-
cies and their costs and benefits”. EVO (2018) define environmental modelling as
a model “that enable raw data to be transformed into useful information, through
synthesis, simulation and prediction”. Wiki (2018) defines environmental modelling
as the “the process of using computer algorithms to predict the distribution of species
in geographic space on the basis of a mathematical representation of their known
distribution in environmental space”.

In my own words, environmental modelling is building or developing efficient
working systems (which may be in form of computational or mathematical or sta-
tistical or spatial application) to estimate, evaluate or mimic a real environmental
situation with the aim to showing adequate understanding of the concept; manip-
ulating or optimizing known parameters; and proffering sound solution(s) that can
assist decisionmaking process(es). There are different types of environmentalmodels
mentioned in literature. Figure 1.1 describes the pictorial concept of environmental
modelling.
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2 1 Introduction to Environmental Modelling

Fig. 1.1 Pictorial description of environmental modelling (Ogola 2007)

In the concept of Ogola (2007) as shown above, environmental modelling is
divided into three subgroups, namely field application, known outcome and pro-
cessing techniques. The ‘field application’ is made-up of water systems, land and
soil, climate, ecosystems and agroforestry. In addition to the ‘field application’,
there exist the renewable energy systems, geo-disciplines and atmospheric systems.
Atmospheric systems are almost synonymous to the climate system, however, the
distinction between these two systems is that atmospheric systems looks at the envi-
ronmental forces that initiates wind systems, rainfall, surface temperature, snow
cover etc. According to Ogola (2007), the ‘known outcome’ includes planning and
management of natural resources, system understanding, forecasting and early warn-
ing, environmental impacts assessment. Lastly, the processing techniques include
simulation, optimization and prediction. In addition to the concept of processing
techniques is model development, model verification and model validation. A typi-
cal model development technique is presented by Logica (2018) in Fig. 1.2.

The quantitative environmental model has been described as a model that focuses
on research, management and decision-making. The Integrated environmental model
is the integration of multiple modeling techniques from different disciplines to solve
environmental problems. Computational environmental model is the use of software
applications for predictive or goal-oriented studies for specific environmental prob-
lems. Spatial environmentalmodel describes an analytical process used to estimate or
evaluate properties of spatial features that are gotten from geographical information
system (GIS) or satellite imagery.

Researcher or modelers’ routine in model formulation or application includes
model calibration, validation, verification and sensitivity analysis. Model calibration
is the process of assigning values to parameters, terms and constants. These values
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Fig. 1.2 Model development techniques (Logica 2018)

are used as input in the model to produce numerical output. Model validation is a
process used for showing how the new model meets-up with some known standard.
This standard may be the numerical output or behavioural trend of an existing work.
Model verification is a process of proving that the modeling formalism is correct.
This process includes debugging each compartment of the computer program; testing
the mathematical models with live dataset; showing that the program logic is correct;
comparing the sensitivity of the model with an existing model; re-scaling to detect
errors or uncertainties in the model etc. Sensitivity analysis is a process which the
modeler evaluates the responses of themodel by considering changes in input param-
eters. Most time, the modeler or researcher develops standards to show that his/her
model could assimilate dataset and comprehend every single detail or modification
to the input parameters. In this chapter, the general outline on environmental models
and few applications were discussed. Lastly, few aerosols model were considered.

1.1 General Outline of Environmental Models

In the general sense of environment model, its scope is quite bogus considering
the multi-disciplinary interpretation of the word ‘environment’. In the field of eco-
nomics, environmental model is referred to as ‘environmental-economic models’
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that describes a qualitative or quantitative way of identifying least-cost policies or
policy mixes of reducing environmental hazards. For example, Lanzi (2017) and
OECD (2014) gave clear details on economic consequences of air pollution. Also,
the economic consequences of climate model have been discussed by OECD (2015).
In the field of psychology, environment model relates the behavior that emanates
from changing environment and how that environment affects its inhabitants. Xiang
et al. (2017) conducted a research on psychological and behavioral effects of air pol-
lution, and how these effects are developed under different theoretical framework. It
was argued that psychosomatic status was also responsible for adverse effect of air
pollution.

From the above, it is quite interesting to note that environmental model is a
multi-disciplinary affair and cannot be hinged mainly on fields of science and engi-
neering. Environmental modelling can be divided into five broad types i.e. hydrol-
ogy, climate, ecological, soil/geological and psychology/economy. The hydrological
environmental models include surface water models, surface water runoffs model,
subsurface water models and coastal models. From literature, surface water model
can be represented mathematically in form of one and two dimensional models. The
one-dimensional surface water models show a derivation that has multiple cross -
sections perpendicular to the anticipated flow path (Zhang et al. 2013; Strong and
Zundel 2014). Also, the one dimensional surface water model is characterized by
the use of step-backwater methodology to determine water surface elevation and
average flow velocity within each cross-section. The two dimensional surface water
model considers the discretization of study location into grids; the determination of
its water surface elevation within each grid element; and the estimation of flow into
each adjacent grid element using finite difference method (Yoshioka et al. 2014).
However, some researchers have adopted other methods for solving the two dimen-
sional surface water model (Bai et al. 2016).

The difference between the one and two dimensional models can be summarized
in the complexity of resolving parameters like flow time, grid elements, design con-
figurations of the model, topography of the study area etc. Hence, the complexity
of the surface water model does not depend on its features (i.e. one or two or three
dimensional model) but on the researcher perception of the model design. The sur-
face water runoffs model is a sub-division of the surface water model. Bhatt andMall
(2015) related the surfacewater runoffs to climate change in a simulationmodel. Like
the surface water models, the subsurface water models are discussed with respect
to its dimensions i.e. 1D, 2D or 3D. One of the famous subsurface water models is
the Hydrus model. The Hydrus model has one (Hydrus-1D), two (Hydrus-2D) and
three dimensional (Hydrus-3D) models. Hydrus 3D model theoretical frameworks
is derived from the Richard’s equation.

The coastal model relates the influence of the marine environment on terrestrial
environment and vice versa. This concept is related to the sea-level rise. The dynam-
ics of sea-level changes is crucial because it has great influence on the terrestrial
environment. Church et al. (2001) propounded that human-induced global warming
is a major cause of the global-mean sea-level rise that leads to an increase in the
global volume of the ocean. Emetere and Akinyemi (2018) reported a computational
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environmental model that accurately evaluated the implication of climate change on
the sea level changes in seven stations on the upper Atlantic.

The ecological environmental model is the second largest concept in environmen-
tal research. The sub-division of the ecological model cuts-across the specialized
branches of ecology (Samiksha 2017) namely: habitat ecology, community ecol-
ogy, population ecology, evolutionary ecology, taxonomic ecology, human ecology,
applied ecology, ecosystem dynamics, ecological energetic, ecophysiology, genecol-
ogy, paleoecology, ecogeography, pedology, ethology etc. For example, paleoecol-
ogy is the study of the life of the past ages through the instrumentality of proven
methods as palynology, paleontology, and radioactive dating. Seddon et al. (2013)
summarized past paleoecology study and models in fifty salient perspectives.

The climate environmental model is adjudged the broadest research in environ-
mental studies because it integrates broad topics—ocean, atmosphere, land surface,
space, solar system etc. Among the specialized branches of climate model, the atmo-
spheric researches have attractedmore scientific publications in the past five decades.
The quest to explain climate change and its numerous effects on the environment has
increased research prospects in atmospheric studies or research. Also, atmospheric
research is embedded in other specialized branches of climate modelling (Emetere
2014, 2016a, 2017a, b, c; Emetere et al. 2016; Emetere and Akinyemi 2017).

The soil/geological model is a compilation of all interactions below the soil
that affects the terrestrial environment. For example, earthquakes, land-slides, earth
tremor etc. are very vital in environmental modelling. Researchers have shown that
models can be propounded to monitor, estimate and evaluate events below the earth
surface (Gupta and Jangid 2011; Emetere 2017d). Also, some researchers have also
modelled the effects of geological disturbances on the eco-system and atmosphere
(Devine et al. 1984; Akinyemi et al. 2016).

There are many sub-modeling techniques in environmental modelling that help
to understand certain phenomenon. For example, conventional modeling deals with
the process of creating a simplified representation of reality to understand it and
potentially predict and control its future development. Edward et al. (2009) used the
conventional method to investigate carbon dioxide emission in trucks and vehicle.
It was observed that typical van-based vehicle produced 181 g of carbon dioxide
(CO2), compared with 4274 g of CO2 for an average trip by car and 1265 g of CO2

for an average bus passenger. Jinduan and Dominic (2018) used the conventional
modelling to investigate the short term water demand using daily water demand,
daily maximum air temperature, and daily total rainfall data from Lexington, Ky., to
develop and test several forecast models. Ghumman et al. (2011) used the conven-
tional model to forecast rainfall run-off in the watershed in Pakistan. It was observed
that conventional model maybe considered as an important alternative to conceptual
models and it can be used when the range of collected dataset is short and of low
standard.

Integratedmodeling is a sub-modelling technique in environmentalmodelling and
it refers to combination of a set of interdependent science-based components (mod-
els, data, and assessment methods) to form an appropriate modeling system. Hughes
et al. (2011) used the integrated model to solve ground water problem in Thames.
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The twomodels have been connected using the model linking standard OpenMI. The
OpenMI (Open Modelling Interface) is an open IT standard that facilitates linking
hydrological model with modules. The primary objectives of OpenMI platform are
to develop, maintain and promote the use of multiple models. Johnston et al. (2011)
used the integratedmodel to predict the state of freshwater ecosystem services within
and across the Albemarle-Pamlico Watershed, North Carolina and Virginia (USA).
The integrated model is made up of five environmental models that are linked within
the Framework to provide multimedia simulation capabilities. The models are: the
SoilWater Assessment Tool (that predicts watershed runoff); theWatershedMercury
Model (that simulatesmercury runoff and loading to streams); theWater qualityAnal-
ysis and Simulation Program (that predicts water quality within the stream channel);
the Habitat Suitability Index model (that predicts physicochemical habitat quality
for individual fish species); and the Bioaccumulation and Aquatic System Simulator
(that predicts fish growth and production, as well as exposure and bioaccumulation
of toxic substances).

Integrated assessment modeling is a sub-modeling technique in environmental
modelling that considers an analytical approach to integrate knowledge froma variety
of disciplinary sources to describe the cause-effect relationships by studying the
relevant interactions and cross-linkages. Rotmans and van Asselt (2001) used the
integrated assessment modelling to examine the history, general features, classes
of models, strengths and weaknesses, and the dilemmas or challenges researcher
encounter. However, there are uncertainties associated to the integrated model. This
includes erroneous knowledge or data, inherent variability (Cullen and Frey 1999).
Matott et al. (2009) reported that the total uncertainty of a given quantity may be
characterized in one of four ways: purely irreducible (i.e. the quantity varies and the
associated population has been completely sampled without error); partly reducible
and partly irreducible (i.e. the quantity varies and the associated population has been
partially sampled or sampled with error); purely reducible (i.e. the quantity does not
vary but has been sampled with error); and certain (i.e. the quantity does not vary
and has been sampled without error).

Probabilistic model (statistical or stochastic models) is referred as a sub- mod-
elling technique that utilize the entire range of input data to develop a probability
distribution ofmodel output rather than a single point value. Sun et al. (2014) used the
probabilistic model to predict the flow of four engineered nanomaterials (nano-TiO2,
nano-ZnO, nano-Ag and CNT) to the environment and to quantify their amounts in
(temporary) sinks such as the in-use stock and (“final”) environmental sinks such as
soil and sediment.

The model life-cycle is defined as one of the key concepts of systems engineering
that generally consists of a series of stages regulated by a set ofmanagement decisions
to estimate the maturity of the system to transcend from one stage to another. A
pictorial definition of model life-cycle is shown in Fig. 1.3.
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Fig. 1.3 Pictorial overview of model life-cycle

1.2 Dimensions of Environmental Models

Hämäläinen (2015) introduced the concept of behavioural issues in environmental
modelling. This includes the salient issues that prompts a modeler or researcher to
make decision on: the choice of method for his/her model; the choice of model to
examine; the choice of approach in solving problems; the choice of whom to cite; the
choice of whom to critic; the choice of research modalities; the mode of explaining
model; the choice of whom to collaborate with. As much as it is good to conceive a
model, it is essentially paramount for researcher to consider how to develop a model,
test-run a model, validate a model, and expand model application. It is also good
to understand the reality of the risk of making choices in environmental modeling.
For example, Montibeller and von Winterfeldt (2015) highlighted a list of cognitive
and motivational biases in decision making. Cognitive biases are systematic patterns
of deviating from norm or rationality in judgment. This includes anchoring certain
bias, equalizing bias, gain-loss bias, myopic problem representation, splitting biases,
proxy bias, range insensitive bias and scaling. According to Hämäläinen (2015),
the main goal of considering behavioral issues in environmental modelling is to
improve the understanding of decision processes and to produce better outcomes
(like predictions, decisions and policies) to avoid ‘Hammer and Nail’ syndrome in
upcoming modelers. ‘Hammer and Nail’ syndrome is when a modeler or researcher
uses only a single modelling tool to solve all kinds of problem. This challenge may
emanate from some scientists who are clamoring for expertise in the use of a single
tool. This kind of cognitive bias is called anchoring. In environmental modelling,
veracity in understanding many tools is very important as it gives the modeler new
perspectives to attain high level accuracy.

Generally, in scientific discuss, the ‘Bandwagon effect’ bias is very common. This
kind of cognitive bias is sometimes referred to ‘herds thinking’ where there is the
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tendency to do (or believe) things becausemany other people do (or believe) the same.
The recent trends in environmental modelling are worrisome because ‘Bandwagon
effect’ is massively crumbling the possibility of creating new perspectives in a given
field. Some ‘old school’ researchers (i.e. those who believe strictly on a concept) are
forcibly rejecting opposing scientific hypothesis that seem to negate their believes on
the validity of certain scientific postulations. This challenge leads to the question—is
there a perfect model? Sterman (2002) answer to the question clearly shows that there
is no perfect model, however, the usefulness of a model is a function of its perceived
relevance.

Another common type of bias environmental researcher face is the ‘Bias blind
spot’. Victims of this kind of bias see their self as less biased than other people.
This challenge has created wide disparity amongst scientists as it has played down
on superior facts and upheld superior complexes. The beauty of knowledge is that
we all cannot see from the same vintage point. While some observer can effortlessly
explain their own side of a matter (may be due to less complexity of the observables),
other observer may have difficulty to comprehend the complexities of observables.
Some literatures in environmental studies are offensive because the writer castigates
so many research works without a substantial evidence to support their claims.

The ‘Continued influence effect’ is a known cognitive bias in environmental mod-
elling that creates a virtuous cycle for a long period of time. This type of bias occurs
when there is the tendency to believe previously learned misinformation even after it
has been corrected.A typical example is the application or functionality of the general
circulation models (GCMs). Wilby et al. (2002) argued that GCMs are restricted in
their usefulness for local impact studies by their coarse spatial resolution (typically
of the order 50,000 km2) and unable to resolve important sub-grid scale features
such as clouds and topography. However, Min-Seop and In-Sik (2018) has success-
fully resolved the sub-grid scale challenge by considering a three-dimensional cloud
resolving model simulation to estimate the appropriate ratios of the sub-grid scale
vertical transport to the total vertical transport of moist static energy for different
horizontal resolutions in the cumulus base mass flux. The identification of an error
in an existing model and the perceived solution to the problem are very important in
environmental modelling. Hence, beginners in environmental modelling should con-
sciously avoid this pit-fall because it would make the modeler or researcher exhaust
much energy to accomplish any meaningful task.

The opposite of the ‘Continued influence effect’ bias is the ‘Irrational escalation’.
This bias occurs when people justify increased investment in a decision, based on the
cumulative prior investment, despite new evidence suggesting that the decision was
probably wrong. This kind of bias is common where there is the ‘herds thinking’.
Unfortunately, research institutions are more culpable to exhibit this type of bias.
Many upcoming modeler sometimes face the challenge to have this bias based on
their perception of the name of the research institute.

Most upcomingmodeler have the ‘Ostrich effect’ bias. This bias entails the victim
tendency to ignore obvious (negative) facts in the formulation or modification of a
model. The antidote to this bias is consulting many literatures before conceiving the
parametric concept of the model.
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As discussed earlier, the ultimate objective of an environmental model is its rele-
vance or applicability for policymaking, software development etc. In recent research
work, modeler or researcher are expected to show the application of their model, its
reproducibility, relevance, accuracy etc. Some modeler may go an extra mile in
expanding the scope of their environmental model to other branches of environmen-
tal studies. For example, the thermographic model has been proven to show great
success in interpreting meteorological imbalances (Emetere 2014). This effect was
applied to explain the thermal distribution during volcanic eruption (Emetere 2017d).
Lastly, the knowledge that was gain from the thermal properties sub-surface elements
led to the extensive use of the model to detect hydrocarbon entrapment in the earth
surface (Emetere et al. 2017a).

The advance stage of model application is the adoption of the model in regula-
tory development such as setting standards, or enforce regulatory requirements. For
example, the Environment Protection Agency (EPA) has adopted AERMOD appli-
cation software for setting standards for air pollution dispersion from point sources.
AERMOD modeling system includes extensive documentation, model code, user’s
guide, supporting documents, and evaluating databases, all of which are available
on the web site of the EPA Support Center for Regulatory Atmospheric Modeling
(NRC 2007).

In like manner, SUTRA (saturated–unsaturated transport) and SUTRA−1 models
are used as standards for evaluating the accuracy of hydrologic and hydrogeochem-
ical processes i.e. movements of pollutants and water (Bobba et al. 2000). SUTRA
was developed in 1984 by United States Geological Survey (USGS). It is a three-
dimensional groundwater model that simulates solute transport (i.e. salt water) or
temperature in a subsurface environment.

The selection of models as standards sometime may not be hinged on only its
accuracy. Sometimes, the selection ofmodels is often based on familiarity. Hence, the
criteria for universal acceptance of anymodel may be the versatility of the inventor or
modeler to arose wider usage of the model. This may be the reason why institutional
based models are promoted than individual models.

1.3 Aerosol Models

The main focus of this book is to discuss the dynamics of environmental modelling
with emphasis on re-processing of satellite imageries of atmospheric aerosol distri-
bution. The definition and sub-division of atmospheric aerosol model is still unclear
because its concept is very broad—considering the factors that triggers its distribu-
tion, dispersion and particulate life-time. Hence, authors define the types of aerosol
models according to their research objectives. For example, Shettle and Fenn (1979)
listed the types of aerosols model as rural aerosol model, urban aerosol model, mar-
itime aerosol model, tropospheric aerosol model and fog model. In this section,
aerosol models will be discussed based on its basic properties.
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Fig. 1.4 Basics of advection-dispersion models (Stockie 2011)

1.3.1 Advection-Dispersion Models

Advection-dispersionmodels aremostly developed on regional scale. This is because
regional meteorology differs from one geographical location to another. The basics
of advection-dispersion models is shown in Fig. 1.4. Till date, it is still a huge
task—integrating regional models into a complex global scale. One of the reason is
that most regional advection-dispersion models are contested based on its theoretical
soundness and computational validity. Zhang et al. (2014) investigated the global
atmospheric aerosol transport model using 3D advection-diffusion equations that
was an extension of the 2D advection-diffusion equation:

∂c

∂t
+ ux

∂c

∂x
+ uy

∂c

∂y
+ uz

∂c

∂z
� kx

∂2c

∂x2
+ ky

∂2c

∂y2
+ kz

∂2c

∂z2
+ λc (1.1)

where c is contaminant concentration; t is time; ux, uy, uz represent wind speed in
the three directions x, y, z respectively; kx, ky, kz represent turbulent diffusivity in
three directions; λ is the climatic factor, which can be its emission source, chemical
conversion, dry deposition and wet scavenging.

TheEuler finite differencemethod for numerical simulationwhich has a horizontal
resolution 4° × 5° and a vertical direction (divided into 11 sub-layers) was used to
resolve Eq. (1.1). The model was queried because the application of the model was
based on laboratory framework only.
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Fig. 1.5 Basics of box
models (Guwahati 2014)

Holmes and Morawska (2006) developed dispersion model whose principles was
based on the box model (BM). The BM operates on the principle of conservation of
mass. The box model is familiar in atmospheric research. Choo-in (2001) applied the
box model to estimate the pollutants in a street tunnel in Thailand. The box model
works perfectly when the air mass is well mixed and concentrations are uniform
throughout. When the box is not defined, pollutants are formed within the box only;
hence, the information on the local concentrations of the pollutants is considered as
negligible. The basics of the box-model is shown in Fig. 1.5.

The Gaussian model (GM) is the most popular model used in atmospheric disper-
sionmodeling. Gaussian or plumemodels operate based on the Gaussian distribution
of the 2D or 3D concentration of the plume under steady state conditions. The Gaus-
sian distribution of the plume is under certain influences like turbulent reflection from
the surface of the earth, dimension of transport, boundary layer (especially when the
mixing height is low), stability classes or travel time from plume sources.

Ahmada (2011) worked on the dispersion of atmospheric pollutants using
two dimensional advection diffusion equations. He started with the generalized
advection-diffusion equation given below

∂C
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− u
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(1.2)

and obtained the two-dimensional advection-diffusion equation given as
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where C is the concentration of pollutants, H is the depth occupied by pollutants, u
is the wind velocity or drift velocity, f is the power of the source, � is the pollutant
chemical activity coefficient of pollutants and μ is the horizontal diffusion coeffi-
cients. The boundary conditions used were the zero Dirichlet boundary condition,
Neumann boundary condition and periodic boundary condition. The finite differ-
ence approach was adopted in order to obtain the numerical solutions of Eq. (1.3).
The solutions for first order forward difference, first order backward difference, first
order central difference, second order central difference, central differences for two
dimensional functions of the Crank-Nicolson method were determined. The model
propounded has three external parameters, namely the pollutant diffusion coefficient
μ, the drift velocity of air u and the pollutant chemical activity coefficient � .

Thongmoon et al. (2007) worked on the numerical solution of a 3D advection-
dispersionmodel for pollutant transport-using the forward in time and centre in space
(FTCS) finite difference method. The paper is an extension of the Choo-in (2001)
box model with a different dimensionality.

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
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∂2C

∂x2
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∂2C

∂y2
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∂2C

∂z2
(1.4)

where u and v are constant wind speeds in the x and y-directions respectively. Dh

and Dv are constant dispersion coefficients in the x and z-directions respectively.
Benson et al. (2000)worked on the application of a fractional advection-dispersion

equation (FADE). They used fractional derivatives to study the scaling behavior of
plumes that undergo Levy motion. This scaling behavior is in time and space of
the heavy tailed motion (Daitche and Tamas 2014). However, the second-order dis-
persion arises for a thin tailed motion. Under this condition, very large motions are
completely ruled out. Contrary to the thin tailed motion, the fractional advection-
dispersion equation considers a very large transition of particles which arise from
high heterogeneity (Benson et al. 2000). The FADE is effective (when the scaled
α-stable density is known) to predict distances of particles in closed forms and their
concentrations versus time. FADE have been found to be accurate in a laboratory set-
tings. However, its accuracy under geographical uncertainties has not been resolved.

1.3.2 Aerosol Optical Depth: Satellite Retrieval Model

The AOD is a vital parameter that applies to determining air quality that affects:
environment and life-forms; monitoring volcanic and biomass pollution; forecasting
and now-casting earth radiation budget and climate change; estimating variability of
aerosols and its size distribution in the atmosphere. The greater the magnitude of the
AOD at specified wavelengths, the lesser the chances of light at that wavelength to
reach the Earth’s surface. Aerosol optical depth is the measurement of transparency
of the atmosphere. When AOD is less than 0.1 and 1.0, it indicates a crystal clear
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sky and very hazy conditions, respectively. AOD measures the amount of light lost
due to the presence of aerosols or aerosols distributed on a vertical path through the
atmosphere.

The sun photometer measures the AOD using the Beer-Lambert-Bouguer law
where the voltage (V) is directly proportional to the spectral irradiance (I) measured
by the sun photometer. The mathematical expression for the Beer-Lambert-Bouguer
law (Faccani et al. 2009; He et al. 2012) is given:

V (λ) � Vo(λ)d2exp(−τ(λ)tot × m) (1.5)

where τ(λ)tot is the total optical depth, and m is the optical air mass, Vo is the
extraterrestrial voltage, V is the digital voltage measured at wavelength λ, d is the
ratio of the average to the actual Earth-Sun distance. The Beer-Lambert-Bouguer
equation (He et al. 2012) could also be modified as

τa �
(
I n

( Vo
R3

) − I n(V − Vdark) − aR
(

p
po

)
m

)
md

(1.6)

where τa is the aerosol optical depth, Vo is the calibration constant for the sun pho-
tometer, R is the Earth-Sun distance, d is the day of the year, V and Vdark are the
sunlight and dark voltages from the sun photometer respectively, aR is the contribu-
tion of optical thickness ofmolecular (Rayleigh) scattering of light in the atmosphere,
p is the station pressure, po is standard sea level atmospheric pressure,m is the relative
air mass and written as m � 1

sin(θ)
, θ is the solar elevation angle.

The measurement of AOD is complex because aerosol is not solely responsible
for the scattering or absorption of light. Other atmospheric constituents, for example,
methane, ozone, nitrogen oxides, carbon (IV) oxide, water vapour scatter or absorb
light, hence their joint AOD can be calculated as shown mathematically below (Liu
et al. 2011):

τ(λ)aerosol � τ(λ)tot − τ(λ)water − τ(λ)Rayleigh − τ(λ)O3

− τ(λ)NO2
− τ(λ)CO2

− τ(λ)CH4 (1.7)

where τ(λ)Rayleigh is the optical depth of the Rayleigh scattering. Spectral aerosol
optical depths at wavelength 440–870 nm are typically used to estimate the size
distribution of aerosols. The size distributions of aerosols are better described by the
Angstrom parameter (α) which can be calculated using two or more wavelengths.
The most popular mathematical representation (Liu et al. 2011) of α is given as

α � −d In τa

d In λ
(1.8)
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where τa is the aerosol optical depth, α is the Angstrom parameter and λ is the
wavelength. When α is equal or greater than 2, a fine mode aerosol is dominant.
When α is near zero, the coarse mode aerosol is dominant.

AOD can be measured using either ground (sun photometer) or remotely sensed
techniques. AERONET is known for harnessing groundmeasurements. It gives qual-
ity data on all aerosol column properties. However, it has a major limitation of few
sites in developing and under-developed regions. The principle of remotely sensed
technique is based on the ability of satellite to capture particulates in the atmo-
sphere through the reflection and absorption of visible and infrared light. Remote
sensing technique is available on some sites. For example, Aura/OMI are used to
obtain aerosol optical depth at ground pixel resolution of 0.25° latitude/longitude
grid and 1° latitude/longitude grid resolution; Meteor-3, TOMS and NIMBUS 7 are
used to obtain aerosol optical depth at ground pixel resolution of 1° × 1.25° lati-
tude/longitude grid resolution. Other satellite sites for obtaining AOD are Moderate
Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution
Radiometer (AVHRR), MEdium Resolution Imaging Spectrometer (MERIS), Polar-
ization and Directionality of the Earth’s Reflectances (POLDER) over ocean and
Multi-angle Imaging SpectroRadiometer (MISR), Advanced Along Track Scanning
Radiometer (AATSR), Total Ozone Mapping Spectrometer (TOMS), Ozone Mon-
itoring Instrument (OMI), MODIS, Atmospheric Infrared Sounder (AIRS), TIROS
Operational Vertical Sounder (TOVS) over land (NOAA 2015).

The main importance of the AOD is to determine the aerosol size distribution. In
this study, the aerosol size distribution was obtained using the Multi-angle Imaging
SpectroRadiometer (MISR). The MISR was launched in 1999 to measure the inten-
sity of solar radiation reflected by the planetary surface and atmosphere. It operates
at various directions, that is, nine different angles (70.5°, 60°, 45.6°, 26.1°, 0°, 26.1°,
45.6°, 60°, 20.5°) and gathers data in four different spectral bands (blue, green, red,
and near-infrared) of the solar spectrum. The blue band is at wavelength 443 nm,
the green band is at wavelength 555 nm, the red band wavelength 670 nm and the
infrared band is at wavelength 865 nm. MISR acquire images at two different lev-
els of spatial resolution; local and global mode. It gathers data at the local mode at
275 m pixel size and 1.1 km at the global mode. Typically, the blue band is to analyse
coastal and aerosol studies. Blue band is higher at regions of increasing vegetation.
The scope of the blue band may include ice, snow, soil or water. The blue band can
therefore be divided into continental model blue band, desert model blue band, urban
model blue band, biomass burning model blue band. The green band is to analyse
Bathymetric mapping and estimating peak vegetation. The red band analyses the
variable vegetation slopes and the infrared band analyses the biomass content and
shorelines.



References 15

References

Ahmada, O. A. (2011). Modeling the dispersion of atmospheric pollutants dispersion using two
dimensional advection diffusion equation, masters project submitted to University of Dar es
Salaam, pp. 1–88.

Akinyemi, M. L., Emetere, M. E., & Usikalu, M. R. (2016). Virtual assessment of air pollution
dispersion from anthropogenic sudden explosion. American Journal of Environmental Sciences,
12(2), 94–101.

Bai, F., Yang, Z., Huai, W., & Zheng, C. (2016). A depth-averaged two dimensional shallow water
model to simulate flow-rigid vegetation interactions. Procedia Engineering, 154, 482–489.

Benson, D. A., Wheatcraft, S. W., & Meerschaert, M. M. (2000). Application of a fractional
advection-dispersion equation. Water Resources Research, 36(6), 1403–1412.

Bobba, A. G., Vijay, P. S., & Lars, B. (2000). Application of environmental models to different
hydrological systems. Ecological Modelling, 125(1), 15–49.

Bhatt,D.,&MallR.K. (2015). SurfaceWaterResources,ClimateChange andSimulationModeling.
Aquatic Procedia 4, 730–738.

Choo-in, S. (2001). Mathematical model for determining carbon monoxide and nitrogen oxide
concentration in street tunnel. M.Sc. Research, Thammasat University, Thailand. pp. 1–67.

Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K, Nhuan, M.T., Qin, D., &
Woodworth, P. L. (2001). Changes in sea level. In J. T. Houghton, Y. Ding, D. J. Griggs, M.
Noguer, P. J. van der Linden & D. Xiaosu (Eds.), Climate change 2001. The scientific basis
(pp. 639–693). Cambridge: Cambridge University Press.

Cullen, A. C., & Frey, H. C. (1999). Probabilistic techniques in exposure assessment: A handbook
for dealing with variability and uncertainty in models and inputs. New York: Plenum.

Daitche, A., & Tamás, T. (2014). Memory effects in chaotic advection of inertial particles. New
Journal of Physics, 16(073008), 1–35.

DBW. (2018). Environmental modelling. https://www.designingbuildings.co.uk/wiki/
Environmental_modelling. Accessed February 24th, 2018.

Delft3D. (2018). Flexible mesh—Environmental modelling. https://www.deltares.nl/academy/
delft3d-block-2a/. Accessed February 24th, 2018.

Devine, J. D., Sigurdsson, H., Davis, A. N., & Self, S. (1984). Estimates of sulfur and chlorine yield
to the Atmosphere from volcanic eruptions and potential climatic effects. Journal Geophysical
Research, 89, 6309–6325. https://doi.org/10.1029/JB089iB07p06309.

Edwards, J. B., McKinnon, A. C., & Cullinane, S. L. (2009). Carbon auditing the ‘Last Mile’:
Modelling the environmental impacts of conventional and online non-food shopping. http://
www.greenlogistics.org/SiteResources/ee164c78-74d3-412f-bc2a-024ae2f7fc7e_FINAL%
20REPORT%20Online-Conventional%20Comparison%20%28Last%20Mile%29.pdf.

Emetere, M. E. (2014). Forecasting hydrological disaster using environmental thermographic mod-
eling. Advances in Meteorology, 2014, 783718.

Emetere, M. E. (2016). Statistical examination of the aerosols loading over mubi-Nigeria: The
satellite observation analysis. Geographica Panonica, 20(1), 42–50.

Emetere, M. E. (2017a). Investigations on aerosols transport over micro- and macro-scale settings
of West Africa. Environmental Engineering Research, 22(1), 75–86.

Emetere, M. E. (2017b). Lightning as a source of electricity: Atmospheric modeling of electromag-
netic fields. International Journal of Technology, 8, 508–518.

Emetere, M. E. (2017c). Impacts of recirculation event on aerosol dispersion and rainfall patterns
in parts of Nigeria. Global Nest Journal, 19(2), 344–352.

Emetere, M. E. (2017d). Monitoring the 3-year thermal signatures of the Calbuco pre-volcano erup-
tion event. Arabian Journal of Geoscience, 10, 94. https://doi.org/10.1007/s12517-017-2861-z.

Emetere, M. E., & Akinyemi, M. L. (2017). Documentation of atmospheric constants over Niamey,
Niger: A theoretical aid formeasuring instruments.Meteorological Applications, 24(2), 260–267.

Emetere, M. E. & Akinyemi, M. L. (2018). Sea level change in seven stations on the upper Atlantic:
Implication on environments. Journal of Physics: Conference Series.

https://www.designingbuildings.co.uk/wiki/Environmental_modelling
https://www.deltares.nl/academy/delft3d-block-2a/
https://doi.org/10.1029/JB089iB07p06309
http://www.greenlogistics.org/SiteResources/ee164c78-74d3-412f-bc2a-024ae2f7fc7e_FINAL%20REPORT%20Online-Conventional%20Comparison%20%2528Last%20Mile%2529.pdf
https://doi.org/10.1007/s12517-017-2861-z


16 1 Introduction to Environmental Modelling

Emetere, M. E., Akinyemi, M. L., & Edeghe, E. B. (2016). A simple technique for sustaining solar
energy production in active convective coastal regions. International Journal of Photoenergy,
2016(3567502), 1–11. https://doi.org/10.1155/2016/3567502.

EVO. (2018). Environmental models. http://www.evo-uk.org/at-the-outset/evo-cloud-services-
portals/environmental-models/. Accessed February 24th, 2018.

FA. (2018). Models—Aviation environmental tools suite. https://www.faa.gov/about/office_org/
headquarters_offices/apl/research/models/. Accessed February 24th, 2018.

Faccani, C., Rabier, F., Fourrie, N., Agust´ı-Panareda, A., Karbou, F., Moll, P., et al. (2009). The
impact of the AMMA radiosonde data on the French global assimilation and forecast system.
Weather and Forecasting, 24, 1268–1286.

FES. (2018). Environmental modelling. https://www.fzp.czu.cz/en/r-9408-study/r-9495-study-
programmes/r-9745-master-s-degree-programmes/r-9753-environmental-modelling. Accessed
February 24th, 2018.

Ghumman,A.R.,Yousry,M.,Ghazaw,A.R.,&Sohail,K.W. (2011).Runoff forecasting by artificial
neural network and conventional model. Alexandria Engineering Journal, 50(4), 345–350.

Giuseppina, G. (2013). How far chemistry and toxicology are computational sciences? InMethods
and experimental techniques in computer engineering (pp. 15–33). https://doi.org/10.1007/978-
3-319-00272-9_2.

Gupta, V. R., & Jangid, R. A. (2011). The effect of bulk density on emission behaviour of soil at
microwave frequencies. International Journal of Microwave Science and Technology, 160129,
1–6.

Guwahati IIT. (2014). Advection-dispersion equation for solute transport in porous media. https://
nptel.ac.in/courses/105103026/32. Accessed August 20th, 2018.

Hämäläinen, R. P. (2015). Behavioral issues in environmental modelling—Themissing perspective.
Environmental Modelling and Software, 73, 244–253.

Hauduc, H., Neumann, M. B., Muschalla, D., Gamerith, V., Gillot, S., & Vanrolleghem, P.
A. (2015). Efficiency criteria for environmental model quality assessment: A review and its
application to wastewater treatment. Environmental Modelling and Software, 68, 196–204.

He, Q., Li, C., Geng, F., Yang, H., Li, P., Li, T., et al. (2012). Aerosol optical properties retrieved
from Sun photometer measurements over Shanghai, China. Journal of Geophysical Research,
117(D16204), 1–8.

Holmes, N. S., & Morawska, L. (2006). A review of dispersion modeling and its application to
the dispersion of particles: An overview of different dispersion models available. Atmospheric
Environment, 40(30), 5902–5928.

Hughes, A., Jackson, C., Mansour, M., Bricker, S., Barkwith, A., Williams, A., et al. (2011, May).
Integrated modelling within the Thames Basin: Examples of BGS work (Poster). In Cities,
catchments and coasts: Applied geoscience for decision-making in London and the Thames
Basin. London, UK. http://nora.nerc.ac.uk/14267/.

Jinduan, C., & Dominic, L. B, (2018). Forecasting hourly water demands with seasonal autore-
gressive models for real-time application.Water Resources Research, 54(2), 879–894.

Johnston, J. M., McGarvey, D. J., Barber, M. C., Laniak, G., Babendreier, J.E., Parmar, R.,
et al. (2011). An integrated modeling framework for performing environmental assessments:
Application to ecosystem services in the Albemarlee Pamlico basins (NC and VA, USA).
Ecological Modelling, 222(14), 2471–2484.

Lanzi, E. (2017). The economic consequence of outdoor air pollution. http://www.
htap.org/meetings/2017/2017_May_2-3/presentations/10_TFIAM%20-%20Economic%
20consequences%20of%20air%20pollution%20v2.pdf.

Liu, Y., Wang, Z., Wang, J., Ferrare, R., Newsom, R., & Welton, E. (2011). The effect of aerosol
vertical profiles on satellite-estimated surface particle sulphate concentrations. Remote Sensing
of Environment, 115(2), 508–513.

Logica. (2018). Enhancing waterfall process through V-model software development methodol-
ogy. https://www.360logica.com/blog/enhancing-waterfall-process-through-v-model-software-
development-methodology/. Accessed August 16th, 2018.

https://doi.org/10.1155/2016/3567502
http://www.evo-uk.org/at-the-outset/evo-cloud-services-portals/environmental-models/
https://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/
https://www.fzp.czu.cz/en/r-9408-study/r-9495-study-programmes/r-9745-master-s-degree-programmes/r-9753-environmental-modelling
https://doi.org/10.1007/978-3-319-00272-9_2
https://nptel.ac.in/courses/105103026/32
http://nora.nerc.ac.uk/14267/
http://www.htap.org/meetings/2017/2017_May_2-3/presentations/10_TFIAM%20-%20Economic%20consequences%20of%20air%20pollution%20v2.pdf
https://www.360logica.com/blog/enhancing-waterfall-process-through-v-model-software-development-methodology/


References 17

Min-Seop, A., & In-Sik, K. (2018). A practical approach to scale-adaptive deep convection in a
GCM by controlling the cumulus base mass flux. Climate and Atmospheric Science, 1, 13.

Montibeller, G., & von Winterfeldt, D. (2015). Cognitive and motivational biases in decision and
risk analysis. Risk Analysis, 35(7), 1230–1251.

National Research Council. (2007). Models in environmental regulatory decision making.
Washington, DC: The National Academies Press. https://doi.org/10.17226/11972.

NOAA. (2015). http://www.esrl.noaa.gov/gmd/outreach/lesson_plans/. Accessed June 23rd, 2015.
OECD. (2014).The cost of air pollution:Health impacts of road transport. Paris: OECDPublishing.
http://dx.doi.org/10.1787/9789264210448-en.

OECD. (2015). The economic consequences of climate change. Paris: OECD Publishing. http://
dx.doi.org/10.1787/9789264235410-en.

Ogola, P. F. A. (2007). Environmental impact assessment general procedures. Paper pre-sented at
short course II on Surface Exploration for Geothermal Resources. Lake Naivasha: UNU-GTP
and KENGEN , Kenya.

Rotmans, J., & van Asselt, M. B. A. (2001). Uncertainty management in integrated assessment
modeling: Towards a pluralistic approach. Environmental Monitoring and Assessment, 69(2),
101–130.

Samiksha, S. (2017). Top 21 specialized branches of ecology—Discussed! http://www.
yourarticlelibrary.com/environment/top-21-specialized-branches-of-ecology-discussed/3801.
Accessed December 30th, 2017.

Seddon, A. W. R., et al. (2013). Looking forward through the past: Identification of 50 priority
research questions in palaeoecology. Journal of Ecology, 102(1), 256–267.

Shawn,M. L., Babendreier, J. E., & Thomas Purucker, S. (2009). Valuating uncertainty in integrated
environmental models: A review of concepts and tools.Water Resources Research, 45,W06421.
https://doi.org/10.1029/2008WR007301.

Shettle, E. P., & Fenn, R. W. (1979). Models for the aerosols of the lower atmosphere and
the effects of humidity variations on their optical properties. Environmental research papers,
AFGL-TR-79-0214, No. 676, pp. 1–23.

Sterman, J. D. (2002). All models are wrong: Reflections on becoming a systems scientist. System
Dynamics Review, 18(4), 501–531.

Stockie, J. M. (2011). The mathematics of atmospheric dispersion modeling. SIAM Review, 53,
349–372.

Strong Todd, J., & Zundel Alan, K. (2014). Limitations of one-dimensional surface water models.
Journal of Undergraduate Research. http://jur.byu.edu/?p=10582.

Sun T. Y., Gottschalk F., Hungerbuhler K., & Nowack B. (2014). Comprehensive probabilistic
modelling of environmental emissions of engineered nanomaterials. Environmental pollution,
185, 69–76.

Thongmoon, M., McKibbin, R., & Tangmanee, S. (2007). Numerical solution of a 3-D advection-
dispersion model for pollutant transport. Thai Journal of Mathematics, 5(1), 91–108.

WIKI. (2018). Environmental niche modelling. https://en.wikipedia.org/wiki/Environmental_
niche_modelling. Accessed February 24th, 2018.

Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM—A decision support tool for the
assessment of regional climate change impacts.EnvironmentalModel and Software, 17, 147–159.

Xiang, P., Geng, L., Zhou, K., & Cheng, X. (2017). Adverse effects and theoretical frameworks
of air pollution: An environmental psychology perspective. Advances in Psychological Science,
25(4), 691–700.

Yoshioka, H., Koichi, U., & M, Fujihara. (2014). A finite element/volume method model of the
depth-averaged horizontally 2D shallow water equations. International Journal for Numerical
Methods in Fluids, 75(1), 23–41.

Zhang, S., Di, X., Li, Y., & Bai, M. (2013). One-dimensional coupled model of surface water
flow and solute transport for basin fertigation. Journal of Irrigation and Drainage Engineering,
139(3), 1–8. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000376.

https://doi.org/10.17226/11972
http://www.esrl.noaa.gov/gmd/outreach/lesson_plans/
http://dx.doi.org/10.1787/9789264210448-en
http://dx.doi.org/10.1787/9789264235410-en
http://www.yourarticlelibrary.com/environment/top-21-specialized-branches-of-ecology-discussed/3801
https://doi.org/10.1029/2008WR007301
http://jur.byu.edu/?p=10582
https://en.wikipedia.org/wiki/Environmental_niche_modelling
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000376


18 1 Introduction to Environmental Modelling

Zhang, T., Ning, Xu, L., Guo, Y. H., &Yong, B. (2014). A global atmospheric contaminant transport
model based on 3D advection-diffusion equation. Journal of Clean Energy Technologies, 2(1),
43–47.


	1 Introduction to Environmental Modelling
	1.1 General Outline of Environmental Models
	1.2 Dimensions of Environmental Models
	1.3 Aerosol Models
	1.3.1 Advection-Dispersion Models
	1.3.2 Aerosol Optical Depth: Satellite Retrieval Model

	References




