6 research outputs found

    The effects of an exercise training program on body composition and aerobic capacity parameters in Tunisian obese children

    No full text
    Background: The prevalence of children obesity is rising alarmingly in both developed and developing countries. Developing effective exercise programs is a strategy for decreasing this prevalence and limiting obesity-associated long-term comorbidities. Objectives: To determine whether a 16-week training program; in addition to the school physical education and without dietary intervention; could have beneficial effects on body composition and aerobic capacity of obese children. Materials and Methods: Twenty-eight obese children (16 boys, 12 girls; aged 12-14 years) were enrolled and were divided into either the exercise group (EG, n = 14) or the control group (CG, n = 14). EG participated in a 16-week aerobic exercises (four 60-min sessions per week at 70-85% of HRmax (maximum heart rate)), in addition to the school physical education. Fat-Free Mass (FFM) and Fat Mass (FM) were assessed with bioelectrical impedance equipment. To assess aerobic capacity, maximal metabolic equivalent of task (METmax) and maximal workload (Wmax) were estimated with an electronically braked cycle ergometer (type Ergoline 500® ). Results: At baseline, there were no differences between the two groups. After the training program, only the EG showed significant reduction in BMI (body mass index) and waist circumference compared with the baseline values (P < 0.001). Exercise training significantly decreased FM only in the EG. A significant increase in FFM was seen in both groups; more marked in the EG. There was a significant increase in METmax (P < 0.05) and Wmax (P = 0.02) in the EG, and no significant changes in these parameters were seen in the CG. HRmax significantly decreased only in the EG (P < 0.05). Conclusion: This training program has beneficial effects on body composition and aerobic capacity parameters in obese children. Our intervention has the advantage of providing a sustainable and reproducible school and community approach for the management of children obesity

    Melatonin reduces muscle damage, inflammation and oxidative stress induced by exhaustive exercise in people with overweight/obesity

    No full text
    Abstract Background Intense physical exercise leads to inflammation, oxidative stress and muscle damage, and these responses are of greater magnitude in people with obesity. Melatonin (MLT) is considered an endogenous antioxidant which may have beneficial effects against inflammation, oxidative stress and promote tissue repair after exercise. The aim of this study was to examine the effect of MLT on inflammatory parameters, oxidative stress and muscle damage in people with overweight/obesity after a high-intensity interval exercise (HIIE). Methods A total of 23 subjects with obesity (9 men and 14 women) age: 33.26 ± 9.81 years, BMI: 37.75 ± 8.87 kg.m−2 were randomized to participate in two experimental sessions: HIIE + Placebo and HIIE + MLT (3 mg). The HIIE protocol corresponds to 8 intervals of 1 min (90 of the maximal aerobic power (MAP)) alternating with 2 min recovery (45 of the MAP). Blood samples were drawn before and 5 min after each exercise session. Results MLT ingestion attenuated the increase of inflammation (C-reactive protein, white blood cells (P < 0.001, ηp2 = 0.45; for both) and Neutrophils (P < 0.01, ηp2 = 0.36)) and hepatic and muscle damage (Aspartate aminotransferase (P < 0.01, ηp2 = 0.25), Alanine aminotransferase (P < 0.01, ηp2 = 0.27) and Creatine kinase (P = 0.02, ηp2 = 0.23). MLT also attenuated the exercise induced lipid and protein peroxidation (i.e., Malondialdehyde (P = 0.03, ηp2 = 0.19) and AOPP (P < 0.001, ηp2 = 0.55)). Concerning the antioxidant status, MLT intake increased Thiol (P < 0.01, ηp2 = 0.26) and Catalase (P < 0.01, ηp2 = 0.32) and decreased Uric acid (P = 0.02, ηp2 = 0.2) and Total bilirubin (P < 0.01, ηp2 = 0.33). Conclusions MLT intake before HIIE reduced muscle damage by modulating oxidative stress and preventing overexpression of the pro-inflammatory mediators in people with obesity

    Impact of Gender, Change of Base of Support, and Visual Deprivation on Postural Balance Control in Young, Healthy Subjects

    Full text link
    Background: Vision, vestibular sense, proprioception and muscle strength are required to maintain balance. However, gender could also play a crucial role in postural sway. Objectives: This study was used to examine (i) the impact of gender, surface type, and vision on postural sway; (ii) the effects of gender and vision on the limb symmetry of postural sway; and (iii) to understand the effects of gender, stance, surface type and vision on the alterations of dynamic postural sway alterations. Methods: This was a cross-sectional study in which young, healthy men (n = 15) and women (n = 12) underwent a balance control assessment using a force plate (SATEL, 40 Hz). Postural stances were evaluated in different conditions: opened eyes (EO) and closed eyes (EC), on different surface foam vs. firm, a dominant leg stance (DL) vs. a non-dominant leg stance (NDL), and a mediolateral stance (ML) vs. an anteroposterior stance (AP). The mediolateral sway (ML sway), anteroposterior sway (AP sway), and sway area were calculated from the centre of pressure displacements. Results: ML sway, AP sway and sway area increased when eyes were closed (P < 0.000). Foam surface perturbs balance control more than firm surface under EO and EC conditions for both genders, as observed in the AP sway curve (P < 0.000). A functional symmetry exists between the DL and NDL for all sway parameters: the ML sway, AP sway, and sway area (P = 0.720; P = 0.292; P = 0.954). The AP stance is more stable for the ML sway than the ML stance for both genders (P < 0.001). For the AP sway, the ML stance is more stable than the AP sway AP direction stance for both genders (P < 0.001). Women were significantly more stable than men in the ML stance when vision was absent (P < 0.01). Conclusions: Postural sway was altered more significantly on a foam surface than on a firm surface and symmetry between the DL and NDL was observed. Furthermore, we concluded that women have better dynamic balance control than men

    Impact of Urinary Incontinence on Physical Function and Respiratory Muscle Strength in Incontinent Women : A Comparative Study between Urinary Incontinent and Apparently Healthy Women

    No full text
    Patients with stress urinary incontinence (SUI) may be afraid to increase intra-abdominal pressure to avoid incontinence. This could lead to weak expiratory muscles. The aim of this study was to investigate the association between respiratory muscle strength, physical function, and SUI in patients with SUI. A cross-sectional study was conducted in the Physical Medicine and Functional Rehabilitation Department. Thirty-one incontinent women (IG) and twenty-nine women in a control group (CG) were enrolled in this study. Anthropometric data, respiratory muscle strength (maximal inspiratory pressure; maximal expiratory pressure), SUI (Urogenital Distress Inventory-6; Incontinence Impact Questionnaire-7; Pad test), and physical function (waist circumference; timed-up-and-go test; abdominal muscle strength) were assessed. Body fat, body mass index, body weight, and waist circumference were higher in IG than CG (p < 0.01), while postural gait and abdominal muscles were lower (p < 0.001). Respiratory muscle strength displayed moderate correlations with SUI severity, especially for maximal expiratory pressure (p < 0.01). Maximal expiratory pressure was moderately associated with physical function. Deterioration in respiratory muscle strength is a characteristic of women with SUI. In this population, pelvic floor muscle training may be prescribed to improve continence. By feeling more confident about increasing intra-abdominal pressure, women with SUI would strengthen their expiratory muscles and eventually improve their physical function.peerReviewe

    Impact of Urinary Incontinence on Physical Function and Respiratory Muscle Strength in Incontinent Women: A Comparative Study between Urinary Incontinent and Apparently Healthy Women

    Full text link
    Patients with stress urinary incontinence (SUI) may be afraid to increase intra-abdominal pressure to avoid incontinence. This could lead to weak expiratory muscles. The aim of this study was to investigate the association between respiratory muscle strength, physical function, and SUI in patients with SUI. A cross-sectional study was conducted in the Physical Medicine and Functional Rehabilitation Department. Thirty-one incontinent women (IG) and twenty-nine women in a control group (CG) were enrolled in this study. Anthropometric data, respiratory muscle strength (maximal inspiratory pressure; maximal expiratory pressure), SUI (Urogenital Distress Inventory-6; Incontinence Impact Questionnaire-7; Pad test), and physical function (waist circumference; timed-up-and-go test; abdominal muscle strength) were assessed. Body fat, body mass index, body weight, and waist circumference were higher in IG than CG (p < 0.01), while postural gait and abdominal muscles were lower (p < 0.001). Respiratory muscle strength displayed moderate correlations with SUI severity, especially for maximal expiratory pressure (p < 0.01). Maximal expiratory pressure was moderately associated with physical function. Deterioration in respiratory muscle strength is a characteristic of women with SUI. In this population, pelvic floor muscle training may be prescribed to improve continence. By feeling more confident about increasing intra-abdominal pressure, women with SUI would strengthen their expiratory muscles and eventually improve their physical function
    corecore