53 research outputs found

    Photothermal Deflection Spectroscopy Study of Nanocrystalline Si (nc-Si) Thin Films Deposited on Porous Aluminum with PECVD

    Get PDF
    We have studied the optical properties of nanocrystalline silicon (nc-Si) film deposited by plasma enhancement chemical vapor deposition (PECVD) on porous aluminum structure using, respectively, the Photothermal Deflection Spectroscopy (PDS) and Photoluminescence (PL). The aim of this work is to investigate the influence of anodisation current on the optical properties of the porous aluminum silicon layers (PASL). The morphology characterization studied by atomic force microscopy (AFM) technique has shown that the grain size of (nc-Si) increases with the anodisation current. However, a band gap shift of the energy gap was observed

    Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis

    Get PDF
    The Boubaker polynomials are investigated in this paper. Using Riordan matrices analysis, a sequence of relations outlining the relations with Chebyshev and Fermat polynomials have been obtained. The obtained expressions are a meaningful supply to recent applied physics studies using the Boubaker polynomials expansion scheme (BPES).Comment: 12 pages, LaTe

    Analytical modeling of vibrations in a damaged beam using Green-Volterra formalism

    Get PDF
    Structural Health Monitoring of aeronautic composite structures through Lamb waves can advantageously exploit the fact that Lamb wave damage interaction is nonlinear. However, one di culty in this context is to be able to distinguish between nonlinearities due to the propagation (i.e. ma- terial or geometrical nonlinearities) and those due to the damage itself that are of main interest here. This work proposes to use the Green-Volterra formal- ism to build up a model for Lamb Wave propagation and damage interaction that is complex enough to represent both types of nonlinearities, and simple enough to be used for simulation and estimation purposes. This approach is presented for the low frequency S0 mode nonlinear propagation in a dam- aged beam. An analytical model of the nonlinear wave propagation is rst derived, where the damage is represented with a polynomial sti ness char- acteristic acting via boundary conditions. This model is then used to derive the Green-Volterra series describing the nonlinear input-output relationship of the system. A modal decomposition of the Green-Volterra series is also pro- vided. Simulations are presented, and the proposed approach is successfully compared to state-of-the-art methods based on nite-elements models.This work has received funding from the European Union's Horizon 2020 research and innovation program under the REMAP project (grant agreement number 769288)

    Functional Characterization of Rare Variants in the SHOX2 Gene Identified in Sinus Node Dysfunction and Atrial Fibrillation

    Get PDF
    Sinus node dysfunction (SND) and atrial fibrillation (AF) often coexist; however, the molecular mechanisms linking both conditions remain elusive. Mutations in the homeobox-containing SHOX2 gene have been recently associated with early-onset and familial AF. Shox2 is a key regulator of sinus node development, and its deficiency leads to bradycardia, as demonstrated in animal models. To provide an extended SHOX2 gene analysis in patients with distinct arrhythmias, we investigated SHOX2 as a susceptibility gene for SND and AF by screening 98 SND patients and 450 individuals with AF. The functional relevance of the novel mutations was investigated in vivo and in vitro, together with the previously reported p.H283Q variant. A heterozygous missense mutation (p.P33R) was identified in the SND cohort and four heterozygous variants (p.G77D, p.L129=, p.L130F, p.A293=) in the AF cohort. Overexpression of the pathogenic predicted mutations in zebrafish revealed pericardial edema for p.G77D and the positive control p.H283Q, whereas the p.P33R and p.A293= variants showed no effect. In addition, a dominant-negative effect with reduced heart rates was detected for p.G77D and p.H283Q. In vitro reporter assays demonstrated for both missense variants p.P33R and p.G77D significantly impaired transactivation activity, similar to the described p.H283Q variant. Also, a reduced Bmp4 target gene expression was revealed in zebrafish hearts upon overexpression of the p.P33R mutant. This study associates additional rare variants in the SHOX2 gene implicated in the susceptibility to distinct arrhythmias and allows frequency estimations in the AF cohort (3/990). We also demonstrate for the first time a genetic link between SND and AF involving SHOX2. Moreover, our data highlight the importance of functional investigations of rare variants

    Dynamic response of Dam-Reservoir systems : review and a semi-analytical proposal

    Get PDF
    This paper presents a review of current techniques employed for dynamic analysis of concrete gravity dams under seismic action. Traditional procedures applied in design bureaus, such as the Pseudo-Static method, often neglect structural dynamic properties, as well as ground amplification effects. A practical alternative arises with the Pseudo-Dynamic method, which considers a simplified spectrum response in the fundamental mode. The authors propose a self-contained development and detailed examples of this latter method, including a comparison with finite element models using transient response of fluid-structure systems. It is verified that application of the traditional procedure should be done carefully and limited to extremely rigid dams. On the other hand, the proposed development is straightforward and in agreement with finite element results for general cases where dam flexibility plays an important role

    Effects of viscous damping models in earthquake stress analysis of concrete dams

    No full text
    • …
    corecore