27,783 research outputs found

    Localization and adiabatic pumping in a generalized Aubry-Andr\'e-Harper model

    Full text link
    A generalization of the Aubry-Andr\'e-Harper (AAH) model is developed, containing a tunable phase shift between on-site and off-diagonal modulations. A localization transition can be induced by varying just this phase, keeping all other model parameters constant. The complete localization phase diagram is obtained. Unlike the original AAH model, the generalized model can exhibit a transition between topologically trivial bandstructures and topologically non-trivial bandstructures containing protected boundary states. These boundary states can be pumped across the system by adiabatic variations in the phase shift parameter. The model can also be used to demonstrate the phenomenon of adiabatic pumping breakdown due to localization

    Only distances are required to reconstruct submanifolds

    Get PDF
    In this paper, we give the first algorithm that outputs a faithful reconstruction of a submanifold of Euclidean space without maintaining or even constructing complicated data structures such as Voronoi diagrams or Delaunay complexes. Our algorithm uses the witness complex and relies on the stability of power protection, a notion introduced in this paper. The complexity of the algorithm depends exponentially on the intrinsic dimension of the manifold, rather than the dimension of ambient space, and linearly on the dimension of the ambient space. Another interesting feature of this work is that no explicit coordinates of the points in the point sample is needed. The algorithm only needs the distance matrix as input, i.e., only distance between points in the point sample as input.Comment: Major revision, 16 figures, 47 page

    Chaplygin Gravitodynamics

    Full text link
    We consider a new approach for gravity theory coupled to Chaplygin matter in which the {\it{relativistic}} formulation of the latter is of crucial importance. We obtain a novel form of matter with dust like density ((volume)1)(\sim (volume)^{-1}) and negative pressure. We explicitly show that our results are compatible with a relativistic generalization of the energy conservation principle, derived here.Comment: Title changed, Revised version,N o change in conclusions, Journal ref.: MPL A21 (2006)1511-151

    Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits

    Get PDF
    An optical isolator for transverse electric (TE) polarized light is demonstrated by adhesive bonding of a ferrimagnetic garnet die on top of a 380 nm thick silicon waveguide circuit. Polarization rotators are implemented in the arms of a nonreciprocal Mach-Zehnder interferometer to rotate the polarization to transverse magnetic in the nonreciprocal phase shifter regions. Calculation of the nonreciprocal phase shift (NRPS) as a function of bonding layer thickness experienced by the TM mode in the interferometer arms is presented, together with the simulation of the robustness of the polarization rotator. Experimentally, 32 dB isolation is measured at 1540.5 nm wavelength using a magnetic field transverse to the light propagation directions. This paves the way to the cointegration of laser diodes and optical isolators on a silicon photonics platform

    Signatures of Non-commutative QED at Photon Colliders

    Get PDF
    In this paper we study non-commutative (NC) QED signatures at photon colliders through pair production of charged leptons (+)(\ell^+ \ell^-) and charged scalars (H+H)(H^+ H^-). The NC corrections for the fermion pair production can be easily obtained since NC QED with fermions has been extensively studied in the literature. NC QED with scalars is less studied. To obtain the cross section for H+HH^+H^- productions, we first investigate the structure of NC QED with scalars, and then study the corrections due to the NC geometry to the ordinary QED cross sections. Finally by folding in the photon spectra for a γγ\gamma \gamma collider with laser back-scattered photons from the e+ee^+ e^- machine, we obtain 95% CL lower bound on the NC scale using the above two processes. We find that, with s=0.5,1.0\sqrt{s} = 0.5, 1.0, and 1.5 1.5 TeV and integrated luminosity L=500(fb1)L = 500(fb^{-1}), the NC scale up to 0.7, 1.2, and 1.6 TeV can be probed, respectively, while, for monochromatic photon beams, these numbers become 1.1, 1.7, 2.6 TeV, respectively.Comment: 16 pages, 7 figure

    Suppression of low-frequency noise in two-dimensional electron gas at degenerately doped Si:P \delta-layers

    Full text link
    We report low-frequency 1/f noise measurements of degenerately doped Si:P \delta-layers at 4.2K. The noise was found to be over six orders of magnitude lower than that of bulk Si:P systems in the metallic regime and is one of the lowest values reported for doped semiconductors. The noise was found to be nearly independent of magnetic field at low fields, indicating negligible contribution from universal conductance fluctuations. Instead interaction of electrons with very few active structural two-level systems may explain the observed noise magnitudeComment: 4 pages, 4 figure

    Voltage control strategies for offshore wind power collection systems upon faults

    Get PDF
    Three types of offshore wind power collection topologies are studied for DC power systems in this paper. Permanent Magnet Synchronous Generator (PMSG) based Wind Energy Conversion System (WECS) is considered and the Optimal Power Control (OPC) is used for the Maximum Power Point Track (MPPT) control. The failure of a wind power unit is regarded as the fault condition in this paper. Voltage control strategies are proposed for series and series-parallel power collection topologies when such a fault happens. Input and output voltage references of the Grid-Side Converter (GSC) are modified for series power collection systems on fault conditions. For series-parallel collection systems, power switches are employed between wind power branches and different voltage control effects with different switch options are discussed. Simulation studies are conducted base on PSCAD/EMTDC to validate the proposed control strategies

    Spontaneous breaking of time reversal symmetry in strongly interacting two dimensional electron layers in silicon and germanium

    Full text link
    We report experimental evidence of a remarkable spontaneous time reversal symmetry breaking in two dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P δ\delta-layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two dimensional electrons are confined to narrow half-filled impurity bands
    corecore