303 research outputs found

    Tiling strategies for optical follow-up of gravitational wave triggers by wide field of view telescopes

    Get PDF
    Binary neutron stars are among the most promising candidates for joint gravitational-wave and electromagnetic astronomy. The goal of this work is to investigate the strategy of using gravitational wave sky-localizations for binary neutron star systems, to search for electromagnetic counterparts using wide field of view optical telescopes. We examine various strategies of scanning the gravitational wave sky-localizations on the mock 2015-16 gravitational-wave events. We propose an optimal tiling-strategy that would ensure the most economical coverage of the gravitational wave sky-localization, while keeping in mind the realistic constrains of transient optical astronomy. Our analysis reveals that the proposed tiling strategy improves the sky-localization coverage over naive contour-covering method. The improvement is more significant for observations conducted using larger field of view telescopes, or for observations conducted over smaller confidence interval of gravitational wave sky-localization probability distribution. Next, we investigate the performance of the tiling strategy for telescope arrays and compare their performance against monolithic giant field of view telescopes. We observed that distributing the field of view of the telescopes into arrays of multiple telescopes significantly improves the coverage efficiency by as much as 50% over a single large FOV telescope in 2016 localizations while scanning around 100 sq. degrees. Finally, we studied the ability of optical counterpart detection by various types of telescopes. In Our analysis for a range of wide field-of-view telescopes we found improvement in detection upon sacrificing coverage of localization in order to achieve greater observation depth for very large field-of-view - small aperture telescopes, especially if the intrinsic brightness of the optical counterparts are weak.Comment: Accepted for publication in A&A. 10 pages, 10 figure

    Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view

    Get PDF
    Aims. Binary neutron stars are among the most promising candidates for joint gravitational-wave and electromagnetic astronomy. The goal of this work is to investigate various observing strategies that telescopes with wide field of view might incorporate while searching for electromagnetic counterparts of gravitational-wave triggers. Methods. We examined various strategies of scanning the gravitational-wave sky localizations on the mock 2015−16 gravitational-wave events. First, we studied the performance of the sky coverage using a naive tiling system that completely covers a given confidence interval contour using a fixed grid. Then we propose the ranked-tiling strategy where we sample the localization in discrete two-dimensional intervals that are equivalent to the telescope’s field of view and rank them based on their sample localizations. We then introduce an optimization of the grid by iterative sliding of the tiles. Next, we conducted tests for all the methods on a large sample of sky localizations that are expected in the first two years of operation of the Laser interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. We investigated the performance of the ranked-tiling strategy for telescope arrays and compared their performance against monolithic telescopes with a giant field of view. Finally, we studied the ability of optical counterpart detection by various types of telescopes. Results. Our analysis reveals that the ranked-tiling strategy improves the localization coverage over the contour-covering method. The improvement is more significant for telescopes with larger fields of view. We also find that while optimizing the position of the tiles significantly improves the coverage compared to contour-covering tiles. For ranked-tiles the same procedure leads to negligible improvement in the coverage of the sky localizations. We observed that distributing the field of view of the telescopes into arrays of multiple telescopes significantly improves the coverage efficiency, by as much as 50% over a single telescope with a large field of view in 2016 localizations while scanning ~100 deg2. Finally, through analyzing a range telescopes with wide field of view, we discovered that counterpart detection can be improved by sacrificing coverage of localization in order to achieve a greater observation depth for telescopes with very large field of view and small aperture, especially if the intrinsic brightness of the optical counterparts is weak

    A Machine Learning Based Source Property Inference for Compact Binary Mergers

    Full text link
    The detection of the binary neutron star (BNS) merger, GW170817, was the first success story of multi-messenger observations of compact binary mergers. The inferred merger rate along with the increased sensitivity of the ground-based gravitational-wave (GW) network in the present LIGO/Virgo, and future LIGO/Virgo/KAGRA observing runs, strongly hints at detection of binaries which could potentially have an electromagnetic (EM) counterpart. A rapid assessment of properties that could lead to a counterpart is essential to aid time-sensitive follow-up operations, especially robotic telescopes. At minimum, the possibility of counterparts require a neutron star (NS). Also, the tidal disruption physics is important to determine the remnant matter post merger, the dynamics of which could result in the counterparts. The main challenge, however, is that the binary system parameters such as masses and spins estimated from the real time, GW template-based searches are often dominated by statistical and systematic errors. Here, we present an approach that uses supervised machine-learning to mitigate such selection effects to report possibility of counterparts based on presence of a NS component, and presence of remnant matter post merger in real time.Comment: accepted in Ap

    First Search for Nontensorial Gravitational Waves from Known Pulsars

    Get PDF
    We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity

    Search for Gravitational Waves from Compact Binary Coalescence In LIGO and Virgo Data from S5 and VSR1

    Get PDF
    We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (LIGO) and VSR1 (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 M. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10−3 yr−1L−1 10 , 2.2×10−3 yr−1L−1 10 , and 4.4×10−4 yr−1L−1 10 respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    Get PDF
    The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ± 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle

    First Search for Gravitational Waves from the Youngest Known Neutron Star

    Get PDF
    We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.7-1.2) × 10 -24 on the intrinsic gravitational-wave strain, (0.4-4) × 10-4 on the equatorial ellipticity of the neutron star, and 0.005-0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway rmodes. This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude

    A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors

    Full text link
    We describe a hierarchical data analysis pipeline for coherently searching for gravitational wave (GW) signals from non-spinning compact binary coalescences (CBCs) in the data of multiple earth-based detectors. It assumes no prior information on the sky position of the source or the time of occurrence of its transient signals and, hence, is termed "blind". The pipeline computes the coherent network search statistic that is optimal in stationary, Gaussian noise, and allows for the computation of a suite of alternative statistics and signal-based discriminators that can improve its performance in real data. Unlike the coincident multi-detector search statistics employed so far, the coherent statistics are different in the sense that they check for the consistency of the signal amplitudes and phases in the different detectors with their different orientations and with the signal arrival times in them. The first stage of the hierarchical pipeline constructs coincidences of triggers from the multiple interferometers, by requiring their proximity in time and component masses. The second stage follows up on these coincident triggers by computing the coherent statistics. The performance of the hierarchical coherent pipeline on Gaussian data is shown to be better than the pipeline with just the first (coincidence) stage.Comment: 12 pages, 3 figures, accepted for publication in Classical and Quantum Gravit
    • …
    corecore