53 research outputs found

    Iron Insufficiency Compromises Motor Neurons and Their Mitochondrial Function in Irp2-Null Mice

    Get PDF
    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice

    Expression and Functional Characterization of the Cancer-related Serine Protease, Human Tissue Kallikrein 14

    Get PDF
    Human tissue kallikrein 14 (KLK14) is a novel extracellular serine protease. Clinical data link KLK14 expression to several diseases, primarily cancer; however, little is known of its (patho)-physiological role. To functionally characterize KLK14, we expressed and purified recombinant KLK14 in mature and proenzyme forms and determined its expression pattern, specificity, regulation, and in vitro substrates. By using our novel immunoassay, the normal and/or diseased skin, breast, prostate, and ovary contained the highest concentration of KLK14. Serum KLK14 levels were significantly elevated in prostate cancer patients compared with healthy males. KLK14 displayed trypsin-like specificity with high selectivity for P1-Arg over Lys. KLK14 activity could be regulated as follows: 1) by autolytic cleavage leading to enzymatic inactivation; 2) by the inhibitory serpins alpha1-antitrypsin, alpha2-antiplasmin, antithrombin III, and alpha1-antichymotrypsin with second order rate constants (k(+2)/Ki) of 49.8, 23.8, 1.48, and 0.224 microM(-1) min(-1), respectively, as well as plasminogen activator inhibitor-1; and 3) by citrate and zinc ions, which exerted stimulatory and inhibitory effects on KLK14 activity, respectively. We also expanded the in vitro target repertoire of KLK14 to include collagens I-IV, fibronectin, laminin, kininogen, fibrinogen, plasminogen, vitronectin, and insulin-like growth factor-binding proteins 2 and 3. Our results indicate that KLK14 may be implicated in several facets of tumor progression, including growth, invasion, and angiogenesis, as well as in arthritic disease via deterioration of cartilage. These findings may have clinical implications for the management of cancer and other disorders in which KLK14 activity is elevated

    Essential role of systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis

    Get PDF
    Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an irondemanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a β3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein–mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution. Includes supplemental materials

    Involvement of mTOR in CXCL12 Mediated T Cell Signaling and Migration

    Get PDF
    CXCL12 is a pleiotropic chemokine involved in multiple different processes such as immune regulation, inflammatory responses, and cancer development. CXCL12 is also a potent chemokine involved in chemoattraction of T cells to the site of infection or inflammation. Mammalian target of rapamycin (mTOR) is a serine-threonine kinase that modulates different cellular processes, such as metabolism, nutrient sensing, protein translation, and cell growth. The role of mTOR in CXCL12-mediated resting T cell migration has yet to be elucidated.Rapamycin, an inhibitor of mTOR, significantly inhibits CXCL12 mediated migration of both primary human resting T cells and human T cell leukemia cell line CEM. p70(S6K1), an effector molecule of mTOR signaling pathway, was knocked down by shRNA in CEM cells using a lentiviral gene transfer system. Using p70(S6K1) knock down cells, we demonstrate the role of mTOR signaling in T cell migration both in vitro and in vivo.Our data demonstrate a new role for mTOR in CXCL12-induced T cell migration, and enrich the current knowledge regarding the clinical use of rapamycin

    Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    Get PDF
    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment
    • …
    corecore