28 research outputs found

    Analysis of Transcripts Expressed in One-Day-Old Larvae and Fifth Instar Silk Glands of Tasar Silkworm, Antheraea mylitta

    Get PDF
    Antheraea mylitta is one of the wild nonmulberry silkworms, which produces tasar silk. An EST project has been undertaken to understand the gene expression profile of A. mylitta silk gland. Two cDNA libraries, one from the whole bodies of one-day-old larvae and the other from the silkglands of fifth instar larvae, were constructed and sequenced. A total of 2476 good-quality ESTs (1239 clones) were obtained and grouped into 648 clusters containing 390 contigs and 258 singletons to represent 467 potential unigenes. Forty-five sequences contained putative coding region, and represented potentially novel genes. Among the 648 clusters, 241 were categorized according to Gene Ontology hierarchy and showed presence of several silk and immune-related genes. The A. mylitta ESTs have been organized into a freely available online database “AmyBASE”. These data provide an initial insight into the A. mylitta transcriptome and help to understand the molecular mechanism of silk protein production in a Lepidopteran species

    Direct and indirect magnetocaloric properties of first- and second-order phase transition materials

    No full text
    The energy-efficient and environmentally friendly alternative cooling technology based on the magnetocaloric effect (MCE) is discussed in this thesis. The thesis has two major parts, one devoted to material characterization and the other to instrument development. Different magnetic oxides and intermetallic compounds with second-order and first-order magnetic transitions, respectively, were studied with the aim of finding materials suitable for magnetic refrigeration. For the application of the MCE, a high value of the isothermal entropy changes and the relative cooling power (RCP), along with minimal temperature hysteresis are required. The temperature hysteresis is negligible for all studied second-order compounds, while an almost ten times higher value of the isothermal entropy change has been observed for the first-order compounds. The highest value of isothermal entropy change (20 J/kgK at 2 T applied magnetic field) has been observed for the MnNiSi-type compounds exhibiting magneto-structural phase transitions, while the largest value of the RCP (176 J/kg at 2 T applied magnetic field) has been observed for the Fe2P-type compounds exhibiting magneto-elastic phase transitions. For the characterization of magnetocaloric properties, one important parameter is the adiabatic temperature change, which is often not reported in literature owing to the lack of experimental setups for direct measurements of the magnetocaloric effect. This thesis also includes the development of a setup for the direct measurement of the adiabatic temperature change upon a change in a magnetic field.

    B-B Coupling and B-B Catenation: Computational Study of the Structure and Reactions of Metal-Bis(borylene) Complexes

    No full text
    A detailed molecular orbital analysis of the metal-bis(borylene) complex Fe(CO)(3){B(Dur)B(N(SiMe3)(2))}] (Dur=2,3,5,6-tetramethylphenyl) (1 a) serves as a focal point of recent developments in this area of chemistry, such as B-B coupling and B-B catenation reactions. There is strong a pi delocalization between the Fe(CO)(3) and (B-Dur)(B-N(SiMe3)(2)) units; the short B-B distance in 1 a is due to this pi delocalization. The pi-donor ligand N(SiMe3)(2) on the boron provides a decisive stability to the complex 1 a. The LUMO of 1 a has B-B sigma-bonding character. Hence B-B coupling is facilitated by filling the LUMO. Strong sigma-donating ligands, such as PMe3 or PCy3, induce B-B coupling. Expulsion of one CO from 1 a followed by dimerization leads to Fe(CO)(2){B(Dur)B(N(SiMe3)(2))}](2) (3 a) with a short Fe-Fe distance of 2.355 angstrom. A detailed mechanism for the reaction of 3 a with CO to give the B-B catenation product 2 f is presented. The bonding of all intermediates is compared to their isolobal main-group analogues

    Evolution of Griffiths phase and critical behaviour of La1-xPbxMnO3 +/- y solid solutions

    No full text
    Polycrystalline La1-xPbxMnO3 +/- y (x = 0.3, 0.35, 0.4) solid solutions were prepared by solid state reaction method and their magnetic properties have been investigated. Rietveld refinement of x-ray powder diffraction patterns showed that all samples are single phase and crystallized with the rhombohedral structure in the R-3c space group. A second order paramagnetic to ferromagnetic (FM) phase transition was observed for all materials. The Griffiths phase (GP), identified from the temperature dependence of the inverse susceptibility, was suppressed by increasing magnetic field and showed a significant dependence on A-site chemical substitution. The critical behaviour of the compounds was investigated near to their Curie temperatures, using intrinsic magnetic field data. The critical exponents (beta, gamma and delta) are close to the mean-field approximation values for all three compounds. The observed mean-field like behaviour is a consequence of the GP and the formation of FM clusters. Long-range FM order is established as the result of long-range interactions between FM clusters. The magnetocaloric effect was studied in terms of the isothermal entropy change. Our study shows that the material with the lowest chemical substitution (x = 0.3) has the highest potential (among the three compounds) as magnetic refrigerant, owing to its higher relative cooling power (258 J kg(-1) at 5 T field) and a magnetic phase transition near room temperature

    Synthesis of ferromagnetic thin films and engineering of their magnetic properties by Fe ion implantation in polycrystalline Pd

    No full text
    Ferromagnetic thin films were synthesized by implantation of Fe ions with energies between 40 keV and 120 keV in 60 nm of polycrystalline Pd. The possibility to engineer magnetic properties in such films through the Fe concentration depth profile was demonstrated. In-plane magnetic moments were measured both while varying the sample temperature at constant applied magnetic field, and varying the applied field at constant temperature. All samples were explicitly shown to exhibit ferromagnetism at sufficiently low temperature, with threshold temperatures in the range from 35 K to 140 K. Saturation moments at 5 K were between 3.5 and 4.6 Bohr magnetons per implanted Fe atom for implantation fluences between 5 × 1015 and 2.3 × 1016 ions/cm2. Coercivities were between 1 and 3 mT. The samples included in the study were carefully characterized with Rutherford backscattering spectrometry, and selected samples with elastic recoil detection analysis and cross-sectional transmission electron microscopy, providing information on Fe concentration profiles, impurity fractions, structure as well as sample modification during implantation. A new model was proposed to calculate the scaling of the films’ magnetic moments with temperature from the Fe concentration profiles. The model qualitatively reproduced the data and quantitative differences were explained. It can thus be applied to predict the modification of the magnetic moment at a given temperature for a similar film when the implantation parameters are varied

    Evaluation of the flocculation characteristics of polyacrylamide grafted xanthan gum/silica hybrid nanocomposite

    No full text
    This manuscript illustrates the feasibility of polyacrylamide grafted xanthan gum/silica based nanocomposite toward its potential application as high performance flocculant for treatment of synthetic effluents and mine wastewater. The flocculation performance of the nanocomposite was systematically evaluated by floc size measurement as well as by traditional turbidity and settling velocity measurement. The flocculation kinetics is in good agreement with the aggregation of particle and particle collision model simultaneously. Furthermore, the effect of flocculant dosage on the synthetic effluent (kaolin and iron-ore suspensions) suggests that the bridging flocculation mechanism is predominating here. The graft copolymer-based nanocomposite also possesses a comprehensive color removal ability from mine wastewater

    Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent

    No full text
    The aim of this work is to study the feasibility of XG-g-PAM/SiO2 nanocomposite towards its potential application as high performance adsorbent for removal of Congo red (CR) dye from aqueous solution. The surface area, average pore size and total pore volume of the developed nanocomposite has been determined. The efficiency of CR dye adsorption depends on various factors like pH, temperature of the solution, equilibrium time of adsorption, agitation speed, initial concentration of dye and adsorbent dosage. It has been observed that the nanocomposite is having excellent CR dye adsorption capacity (Q(0) = 209.205 mg g(-1)), which is considerably high. The dye adsorption process is controlled by pseudo-second order and intraparticle diffusion kinetic models. The adsorption equilibrium data correlates well with Langmuir isotherm. Desorption study indicates the efficient regeneration ability of the dye loaded nanocomposite. (c) 2013 Elsevier Ltd. All rights reserved

    Effect of small cation occupancy and anomalous Griffiths phase disorder in nonstoichiometric magnetic perovskites

    No full text
    The structural, magnetic, magnetocaloric and Griffiths phase (GP) disorder of non-stoichiometric perovskite manganites La0.8-xSr0.2-yMn1+x+yO3 are reported here. Determination of valence states and structural phases evidenced that the smaller cations Mn2+ and Mn3+ will not occupy the A-site of a perovskite under atmospheric synthesis conditions. The same analysis also supports that the vacancy in the A-site of a perovskite induces a similar vacancy in the B-site. The La3+ and Sr2+ cation substitutions in the A-site with vacancy influences the magnetic phase transition temperature (TC) inversely, which is explained in terms of the electronic bandwidth change. An anomalous non-linear change of the GP has been observed in the Sr substituted compounds. The agglomeration of Mn3+-Mn4+ pairs (denoted as dimerons), into small ferromagnetic clusters, has been identified as the reason for the occurrence of the GP. A threshold limit of the dimeron formation explains the observed non-linear behaviour of the GP formation. The Sr-substituted compounds show a relatively large value of isothermal entropy change (maximum 3.27 J/kgK at mu H-0 = 2T) owing to its sharp magnetic transition, while the broad change of magnetization in the La-substituted compound enhances the relative cooling power (maximum 98 J/kg at mu H-0 = 2T)

    Field induced crossover in critical behaviour and direct measurement of the magnetocaloric properties of La0.4Pr0.3Ca0.1Sr0.2MnO3

    No full text
    La0.4Pr0.3Ca0.1Sr0.2MnO3 has been investigated as a potential candidate for room temperature magnetic refrigeration. Results from X-ray powder diffraction reveal an orthorhombic structure with Pnma space group. The electronic and chemical properties have been confirmed by X-ray photoelectron spectroscopy and ion-beam analysis. A second-order paramagnetic to ferromagnetic transition was observed near room temperature (289 K), with a mean-field like critical behaviour at low field and a tricritical mean-field like behaviour at high field. The field induced crossover in critical behaviour is a consequence of the system being close to a first-order magnetic transition in combination with a magnetic field induced suppression of local lattice distortions. The lattice distortions consist of interconnected and weakly distorted pairs of Mn-ions, where each pair shares an electron and a hole, dispersed by large Jahn–Teller distortions at Mn3+ lattice sites. A comparatively high value of the isothermal entropy-change (3.08 J/kg-K at 2 T) is observed and the direct measurements of the adiabatic temperature change reveal a temperature change of 1.5 K for a magnetic field change of 1.9 T

    Effect of reduced local lattice disorder on the magnetic properties of B-site substituted La0.8Sr0.2MnO3

    No full text
    Disorder induced by chemical inhomogeneity and Jahn-Teller (JT) distortions is often observed in mixed valence perovskite manganites. The main reasons for the evolution of this disorder are connected with the cationic size differences and the ratio between JT active and non-JT active ions. The quenched disorder leads to a spin-cluster state above the magnetic transition temperature. The effect of Cu, a B-site substitution in the La0.8Sr0.2MnO3 compound, on the disordered phase has been addressed here. X-ray powder diffraction reveals rhombohedral (R-3c) structures for both the parent and B-site substituted compound with negligible change of lattice volume. The chemical compositions of the two compounds were verified by ion beam analysis technique. With the change of electronic bandwidth, the magnetic phase transition temperature has been tuned towards room temperature (318 K), an important requirement for room temperature magnetic refrigeration. However, a small decrease of the isothermal entropy change was observed with Cu-substitution, related to the decrease of the saturation magnetization
    corecore