512 research outputs found

    Determination of neutron flux distribution by using ANISN, a one-dimensional discrete S sub n ordinates transport code with anisotropic scattering

    Get PDF
    The purpose of this project was to use a one-dimensional discrete coordinates transport code called ANISN in order to determine the energy-angle-spatial distribution of neutrons in a 6-feet cube rock box which houses a D-T neutron generator at its center. The project was two-fold. The first phase of the project involved adaptation of the ANISN code written for an IBM 360/75/91 computer to the UNIVAC system at JSC. The second phase of the project was to use the code with proper geometry, source function and rock material composition in order to determine the neutron flux distribution around the rock box when a 14.1 MeV neutron generator placed at its center is activated

    Mechanochemical synthesis, characterization and photocatalytic Properties of M2O3/TiO2 (M = Fe, Mn) nano-composite under visible light

    Get PDF
    Nano-particles of homogeneous solution between TiO2 and M2O3 (M = Fe, Mn; upto 10 wt %) have been prepared by mechanochemical milling of TiO2 and yellow/Red Fe2O3 and Mn2O3 using a planetary ball mill. Photocatalytic activities of TiO2 / M2O3 powders were investigated by photooxidation of different dyes like Rhodamine B (RB), Methyl orange (MO), thymol blue (TB) and Bromocresol green (BG) under visible light (300-W Xe lamp; Ī» > 420 nm). The results show that the alloy of TiO2 with 5 wt % of Fe2O3 (YFT1) exhibit photocatalytic activity 3-5 times higher than that of P25 TiO2 and 5 wt % of Mn2O3 /TiO2 (MNT1). Therefore, we have mainly discussed on Fe2O3/TiO2 alloy. XRD of powders show that it has anatase structure with no peak of any of Fe2O3/Mn2O3. EDX spectra show that Fe/Mn is uniformly distributed in TiO2. The average particle size and crystallite size of YFT1, MNT1 were found to be 30Ā±5 nm (TEM), 100Ā±5 nm (SEM) and 12 nm (XRD) respectively. Optical adsorption edge of YFT1 is found to be 2.26 eV. EPR and magnetic susceptibility show that Fe3+ is in low spin state corresponding to ĀµB = 1.8 BM. As the band edge is lower than TiO2, which means that Fe3+ is situated in between conduction band and valence band. The optical absorption causes the formation of hole on Fe3+ and liberated electron goes to conduction band. This charge separation is facilitated by visible light rather than UV or near UV light due to lesser energy gap between Fe3+ and bottom of conduction band. The oxidation state of iron has been found to be +3 from redox titration and XPS

    An Asymptotic Preserving and Energy Stable Scheme for the Euler-Poisson System in the Quasineutral Limit

    Full text link
    An asymptotic preserving and energy stable scheme for the Euler-Poisson system under the quasineutral scaling is designed and analysed. Correction terms are introduced in the convective fluxes and the electrostatic potential, which lead to the dissipation of mechanical energy and the entropy stability. The resolution of the semi-implicit in time finite volume in space fully-discrete scheme involves two steps: the solution of an elliptic problem for the potential and an explicit evaluation for the density and velocity. The proposed scheme possesses several physically relevant attributes, such as the the entropy stability and the consistency with the weak formulation of the continuous Euler-Poisson system. The AP property of the scheme, i.e. the boundedness of the mesh parameters with respect to the Debye length and its consistency with the quasineutral limit system, is shown. The results of numerical case studies are presented to substantiate the robustness and efficiency of the proposed method.Comment: 29 pages, research paper. arXiv admin note: text overlap with arXiv:2206.0606

    Design of a photosystem to harvest visible-light into electrons: photosensitised one electron redox reactions in organic synthesis

    Get PDF
    Based on synchronous oxidation-reduction processes, analogous to photosynthetic mechanistic paradigm, a photosystem utilising Ph3P or ascorbic acid as sacrificial electron donor has been developed to halvest electrons from visible light photons. The utility of such photosystem has been demonstrated by initiating various one-electron reductive -C-C-bo nd formation reactions. Biologically active PGE1, and C-Furanosides are synthesised employing this photosystem at a crucial step

    Tip enhanced laser ablation sample transfer for mass spectrometry

    Get PDF
    Ā© 2015 Materials Research Society. Mass spectrometry is one of the primary analysis techniques for biological analysis but there are technological barriers in sampling scale that must be overcome for it to be used to its full potential on the size scale of single cells. Current mass spectrometry imaging methods are limited in spatial resolution when analyzing large biomolecules. The goal of this project is to use atomic force microscope (AFM) tip enhanced laser ablation to remove material from cells and tissue and capture it for subsequent mass spectrometry analysis. The laser ablation sample transfer system uses an AFM stage to hold the metal-coated tip at a distance of approximately 10 nm from a sample surface. The metal tip acts as an antenna for the electromagnetic radiation and enables the ablation of the sample with a spot size much smaller than a laser focused with a conventional lens system. A pulsed nanosecond UV or visible wavelength laser is focused onto the gold-coated silicon tip at an angle nearly parallel with the surface, which results in the removal of material from a spot between 500 nm and 1 um in diameter and 200 and 500 nm deep. This corresponds to a few picograms of ablated material, which can be captured on a metal surface for MALDI analysis. We have used this approach to transfer small peptides and proteins from a thin film for analysis by mass spectrometry as a first step toward high spatial resolution imaging

    Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Antheraea mylitta </it>cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of <it>Reoviridae </it>family, infects Indian non-mulberry silkworm, <it>Antheraea mylitta</it>, and contains 11 segmented double stranded RNA (S1-S11) in its genome. Some of its genome segments (S2 and S6-S11) have been previously characterized but genome segments encoding viral capsid have not been characterized.</p> <p>Results</p> <p>In this study genome segments 1 (S1) and 3 (S3) of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related <it>cypoviruses </it>like <it>Bombyx mori </it>CPV (BmCPV), <it>Lymantria dispar </it>CPV (LdCPV), and <it>Dendrolimus punctatus </it>CPV (DpCPV). The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in <it>Escherichia coli </it>M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs) by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein.</p> <p>Conclusion</p> <p>Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3 encoded viral structural proteins can self assemble to form viral outer capsid and S1 encoded protein remains associated with it as inner capsid to maintain the stability. Further studies will help to understand the molecular mechanism of capsid formation during cypovirus replication.</p

    Transforming Steel Domain Green through Innovative Waste Management - A Jindal Approach

    Get PDF
    The paper summarises the various innovative approaches taken at the COREX process based integrated steel plant of M/s Jindal Vijaynagar Steel Limited. The economics of res-ource recyling has also been described

    Production of Fe-Si-Mn from leached sea nodule residue

    Get PDF
    A pilot plant for processing of polymetallic sea nodule on 500 Kg/day scale has been set up by Department of Ocean Development at CRDL, HZL, Udaipur. After recovery of Cu, Ni & Co by NH3/SO2 pressure leaching, the generated residue contains considerable amount of manganese and iron. Attempts on recovery of manganese from this residue has been made at National Metallurgical Laboratory and standard grade Fe-Si-Mn alloy has been produced. Two different routes of smelting were carried out which comprised single stage smelting of residue blended with manganese containing materials and two stage smelting of residue with out any blending. The process is developed at 20 Kg scale and has been tested at 300 Kg scale in pilot plant also. A maximum recovery of Mn in the form of Fe-Si-Mn alloy has been found 68.0%
    • ā€¦
    corecore