24 research outputs found

    Design of a Compact Neutron Detector with Flat Response in energy range from 5-20 MeV

    Get PDF
    One of the requirements of neutron detection in wide energy range is a detector with flat response. In this work, a compact neutron detector for energy range from 5-20 MeV has been introduced. The detector has two small spherical 3He proportional counters (PC) placed inside a cylindrical polyethylene moderator. Flat response (sensitivity) of the detector has been optimized according to the counters positions inside the moderator. Optimization carried out using MCNP4C Monte Carlo code and Artificial Neural Network (ANN). Results show that the flatness of the sensitivity response of the introduced detector has been increased compared to the conventional detectors

    Estimation of void fraction for homogenous regime of two-phase flows in unstable operational conditions using gamma-ray and neural networks

    Get PDF
     Almost all the multi-phase flow meters (MPFMs) using gamma-ray attenuation, are calibrated for liquid and gas phases with constant density and pressure. When operational conditions such as temperature and pressure change in pipelines, the radiation-based multi-phase flowmeters would measure the flow rate with error. Therefore, performance of MPFMs would be improved by eliminating any dependency on the fluid properties such as density. In this work, a method based on dual modality densitometry combined with Artificial Neural Network (ANN) is proposed in order to estimate the void fraction in homogenous regime of gas-liquid two-phase flows in unstable operational conditions (changeable temperature and pressure) in oil industry. An experimental setup was implemented to generate the optimum required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in various liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.78% in density variations range of 0.735 up to 0.98 g/cm

    Prediction of Optimum Gas Mixture for Highest SXR Intensity Emitted by A 4kj Plasma Focus Device Using Artificial Neural Network

    Get PDF
    In this study, artificial neural network (ANN) is investigated to predict the optimum gas mixture for highest soft X-ray (SXR) intensity emitted by a 4kJ plasma focus device. To do this multi-layer perceptron (MLP) neural network is used for developing the ANN model in MATLAB 7.0.4 software. In this model, the input parameters are voltage, Percentage of nitrogen in admixture and pressure and the output is SXR intensity. The obtained results show that the proposed ANN model has achieved good agreement with the experimental data and has a small error between the estimated and experimental values. Therefore, this model is a useful, reliable, fast and cheap tool to predict the optimum gas mixture for highest SXR intensity emitted by plasma focus devices

    A Novel Method for Ion Track Counting in Polycarbonate Detector

    Get PDF
    A computer program for recognizing and counting the track of ions that are detected with polycarbonate detector has been written using MATLAB software. There are different programs for counting the track of ions in different detectors. Algorithm of this program specially has been written for polycarbonate detector and also for low magnification of optical microscope. Thus, with this method as per image of optical microscope, greater numbers of ions are visible and general distribution of ions can be better known. However, the accuracy of counting program is very high

    Experimental Study of Void Fraction Measurement Using a Capacitance-Based Sensor and ANN in Two-Phase Annular Regimes for Different Fluids

    Get PDF
    One of the most severe problems in power plants, petroleum and petrochemical industries is the accurate determination of phase fractions in two-phase flows. In this paper, we carried out experimental investigations to validate the simulations for water–air, two-phase flow in an annular pattern. To this end, we performed finite element simulations with COMSOL Multiphysics, conducted experimental investigations in concave electrode shape and, finally, compared both results. Our experimental set-up was constructed for water–air, two-phase flow in a vertical tube. Afterwards, the simulated models in the water–air condition were validated against the measurements. Our results show a relatively low relative error between the simulation and experiment indicating the validation of our simulations. Finally, we designed an Artificial Neural Network (ANN) model in order to predict the void fractions in any two-phase flow consisting of petroleum products as the liquid phase in pipelines. In this regard, we simulated a range of various liquid–gas, two-phase flows including crude oil, oil, diesel fuel, gasoline and water using the validated simulation. We developed our ANN model by a multi-layer perceptron (MLP) neural network in MATLAB 9.12.0.188 software. The input parameters of the MLP model were set to the capacitance of the sensor and the liquid phase material, whereas the output parameter was set to the void fraction. The void fraction was predicted with an error of less than 2% for different liquids via our proposed methodology. Using the presented novel metering system, the void fraction of any annular two-phase flow with different liquids can be precisely measured

    Enhanced Multiphase Flow Measurement Using Dual Non-Intrusive Techniques and ANN Model for Void Fraction Determination

    No full text
    There are many petrochemical industries that need adequate knowledge of multiphase flow phenomena inside pipes. In such industries, measuring the void fraction is considered to be a very challenging task. Thus, various techniques have been used for void fraction measurements. For determining more accurate multiphase flow measurements, this study employed dual non-intrusive techniques, gamma-ray and electrical capacitance sensors. The techniques using such sensors are considered non-intrusive as they do not cause any perturbation of the local structure of the phases’ flow. The first aim of this paper is to analyze both techniques separately for the void fraction data obtained from practical experiments. The second aim is to use both techniques’ data in a neural network model to analyze measurements more efficiently. Accordingly, a new system is configured to combine the two techniques’ data to obtain more precise results than they can individually. The simulations and analyzing procedures were performed using MATLAB. The model shows that using gamma-ray and capacitance-based sensors gives Mean Absolute Errors (MAE) of 3.8% and 2.6%, respectively, while using both techniques gives a lower MAE that is nearly 1%. Consequently, measurements using two techniques have the ability to enhance the multiphase flows’ observation with more accurate features. Such a hybrid measurement system is proposed to be a forward step toward an adaptive observation system within related applications of multiphase flows
    corecore