36 research outputs found

    Optical sensing of microbial life on surfaces

    Get PDF
    The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface

    Off-The-Shelf MEMS for Rotary MEMS

    No full text

    Vision-Based Microtribological Characterization of Linear Microball Bearings

    Get PDF
    Microball bearings can potentially provide robust and low friction support in micromachines such as micromotors and microgenerators. Their microtribological behavior needs to be investigated for design and control of such micromachines. In this paper a vision-based, non-intrusive measurement method is presented for characterization of friction in linear microball bearings. Infrared imaging is used to directly observe the dynamics of microballs and track the motion of bearing components. It is verified that microballs roll most of the time with occasional sliding or bumping resulting from fabrication nonuniformity. The friction-velocity curve demonstrates evident hysteresis. The dependence of frictional behavior on several factors is studied

    Design, microfabrication and characterization of a power delivery system for new biomedical applications

    No full text
    This paper presents the design, microfabrication and characterization of a wireless power delivery system capable of driving a surface acoustic wave sensor (SAW) for biomedical applications. The system consists of two planar, spiral-square microcoils, which have been geometrically optimized in order to maximize the quality factor Q. The integration of the SAW - microcoil system into artificial implant sites will allow a real-time biofilm growth monitoring and treatment, providing countless advantages to the related medical applications

    Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films

    No full text
    This paper reports residual stress measurements and fracture analysis in thick tetraethylorthosilicate (TEOS) and silane-based plasma enhanced chemical vapor deposition (PECVD) oxide films. The measured residual stress depended strongly on thermal process parameters; dissolved hydrogen gases played an important role in governing intrinsic stress. The tendency to form cracks was found to be a strong function of film thickness and annealing temperature. Critical cracking temperature was predicted using mixed mode fracture mechanics, and the predictions provide a reasonable match to experimental observations. Finally, engineering solutions were demonstrated to overcome the problems caused by wafer bow and film cracks. The results of this study should be able to provide important insights for the design of fabrication processes for MEMS devices requiring high temperature processing of films
    corecore