11 research outputs found

    Spaceflight-Associated Immune System Modifications

    Get PDF
    Spaceflight is an adverse environment characterized by a unique combination of stressors affecting almost all physiological systems, including the immune system. Indeed, several studies have shown that about 50% of the astronauts have faced immunological troubles. Here, we will review how spaceflight affects immune cell development, innate as well as adaptive immunity, required to ensure an efficient protection of the host, with a particular focus on T and B cells. Indeed, to better appreciate the risks associated to future long-duration space missions and to develop pharmacologic or nutritional countermeasures allowing immune system protection, it is mandatory to fully understand how these cell types are affected by space conditions. Finally, we will compare immune changes observed in astronauts with those encountered in the elderly, thereby illustrating the societal interest of space research

    New aspects of the Molecular Biology of melanoma metastasis

    No full text
    International audienc

    Contrôle épigénétique sur les capacités invasives des cellules tumorales dans le mélanome humain

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Chronic Hypergravity Induces a Modification of Histone H3 Lysine 27 Trimethylation at TCRβ Locus in Murine Thymocytes

    No full text
    Gravity changes are major stressors encountered during spaceflight that affect the immune system. We previously evidenced that hypergravity exposure during gestation affects the TCRβ repertoire of newborn pups. To identify the mechanisms underlying this observation, we studied post-translational histone modifications. We first showed that among the four studied post-translational histone H3 modifications, only lysine 27 trimethylation (H3K27me3) is downregulated in the thymus of mice exposed to 2× g for 21 days. We then asked whether the TCRβ locus chromatin structure is altered by hypergravity exposure. ChIP studies performed on four Vβ segments of the murine double-negative SCIET27 thymic cell line, which corresponds to the last maturation stage before V(D)J recombination, revealed increases in H3K27me3 after 2× g exposure. Finally, we evaluated the implication for the EZH2 methyltransferase in the regulation of the H3K27me3 level at these Vβ segments by treating SCIET27 cells with the GSK126-specific inhibitor. These experiments showed that the downregulation of H3K27me3 contributes to the regulation of the Vβ germline transcript expression that precedes V(D)J recombination. These data show that modifications of H3K27me3 at the TCRβ locus likely contribute to an explanation of why the TCR repertoire is affected by gravity changes and imply, for the first time, EZH2 in the regulation of the TCRβ locus chromatin structure

    Modulation of Iberian Ribbed Newt Complement Component C3 by Stressors Similar to those Encountered during a Stay Onboard the International Space Station

    No full text
    The complement system plays an important role in inflammation, innate and acquired immunity, as well as homeostasis. Despite these functions, the effects of spaceflight conditions on the complement system have not yet been intensively studied. Consequently, we investigated the effects of five types of chronic stressors, similar to those encountered during a stay onboard the International Space Station, on C3 expression in larvae of the urodele amphibian Pleurodeles waltl. We focused on C3 because it is a critical component of this system. These studies were completed by the analysis of adult mice exposed to two models of inflight stressors. Our data show that simulating space radiation, or combining a modification of the circadian rhythm with simulated microgravity, affects the amount of C3 proteins. These results suggest that C3 expression could be modified under real spaceflight conditions, potentially increasing the risk of inflammation and associated tissue damage

    Gravitational Experimental Platform for Animal Models, a New Platform at ESA’s Terrestrial Facilities to Study the Effects of Micro- and Hypergravity on Aquatic and Rodent Animal Models

    No full text
    Using rotors to expose animals to different levels of hypergravity is an efficient means of understanding how altered gravity affects physiological functions, interactions between physiological systems and animal development. Furthermore, rotors can be used to prepare space experiments, e.g., conducting hypergravity experiments to demonstrate the feasibility of a study before its implementation and to complement inflight experiments by comparing the effects of micro- and hypergravity. In this paper, we present a new platform called the Gravitational Experimental Platform for Animal Models (GEPAM), which has been part of European Space Agency (ESA)’s portfolio of ground-based facilities since 2020, to study the effects of altered gravity on aquatic animal models (amphibian embryos/tadpoles) and mice. This platform comprises rotors for hypergravity exposure (three aquatic rotors and one rodent rotor) and models to simulate microgravity (cages for mouse hindlimb unloading and a random positioning machine (RPM)). Four species of amphibians can be used at present. All murine strains can be used and are maintained in a specific pathogen-free area. This platform is surrounded by numerous facilities for sample preparation and analysis using state-of-the-art techniques. Finally, we illustrate how GEPAM can contribute to the understanding of molecular and cellular mechanisms and the identification of countermeasures

    Plasticity of the human IgM repertoire in response to long-term spaceflight: Running title: Diversity of cosmonaut IgM repertoire

    No full text
    International audienceImmune dysregulation is among the main adverse outcomes of spaceflight. Despite the crucial role of the antibody repertoire in host protection, the effects of spaceflight on the human antibody repertoire are unknown. Consequently, using high‐throughput sequencing, we examined the IgM repertoire of five cosmonauts 25 days before launch, after 64 ± 11 and 129 ± 20 days spent on the International Space Station (ISS), and at 1, 7, and 30 days after landing. This is the first study of this kind in humans. Our data revealed that the IgM repertoire of the cosmonauts was different from that of control subjects (n = 4) prior to launch and that two out the five analyzed cosmonauts presented significant changes in their IgM repertoire during the mission. These modifications persisted up to 30 days after landing, likely affected the specificities of IgM binding sites, correlated with changes in the V(D)J recombination process responsible for creating antibody genes, and coincided with a higher stress response. These data confirm that the immune system of approximately half of the astronauts who spent 6 months on the ISS is sensitive to spaceflight conditions, and reveal individual responses indicating that personalized approaches should be implemented during future deep‐space exploration missions that will be of unprecedented duration

    B-cell homeostasis is maintained during two months of head-down tilt bed rest with or without antioxidant supplementation

    No full text
    Alterations of the immune system could seriously impair the ability to combat infections during future long-duration space missions. However, little is known about the effects of spaceflight on the B-cell compartment. Given the limited access to astronaut samples, we addressed this question using blood samples collected from 20 healthy male volunteers subjected to long-duration bed rest, an Earth-based analog of spaceflight. Hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, four B-cell subsets, immunoglobulin isotypes, six cytokines involved in inflammation, cortisone and cortisol were quantified at five time points. Tibia microarchitecture was also studied. Moreover, we investigated the efficiency of antioxidant supplementation with a cocktail including polyphenols, omega 3, vitamin E and selenium. Our results show that circulating hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, and B-cell subsets were not affected by bed rest. Cytokine quantification suggested a lower systemic inflammatory status, supported by an increase in serum cortisone, during bed rest. These data confirm the in vivo hormonal dysregulation of immunity observed in astronauts and show that bed rest does not alter B-cell homeostasis. This lack of an impact of long-term bed rest on B-cell homeostasis can, at least partially, be explained by limited bone remodeling. None of the evaluated parameters were affected by the administration of the antioxidant supplement. The non-effectiveness of the supplement may be because the diet provided to the non-supplemented and supplemented volunteers already contained sufficient antioxidants. Given the limitations of this model, further studies will be required to determine whether B-cell homeostasis is affected, especially during future deep-space exploration missions that will be of unprecedented durations

    Molecular cloning and expression analysis of Pleurodeles waltl complement component C3 under normal physiological conditions and environmental stresses

    Get PDF
    C3 is a component of the complement system that plays a central role in immunity, development and tissue regeneration. In this study, we isolated the C3 cDNA of the Iberian ribbed newt Pleurodeles waltl. This cDNA encodes a 1637 amino acid protein with an estimated molecular mass of 212.5. kDa. The deduced amino acid sequence showed that P. waltl C3 contains all the conserved domains known to be critical for C3 function. Quantitative real-time PCR (qRT-PCR) demonstrated that under normal physiological conditions, P. waltl C3 mRNA is expressed early during development because it is likely required for neurulation. Then, its expression increased as the immune system developed. In adults. the liver is the richest source of C3, though other tissues can also contribute. Further analysis of C3 expression demonstrated that C3 transcription increased when P. waltl larvae were exposed to pH or temperature stress, suggesting that environmental modifications might affect this animal's defenses against pathogens. © 2014 Elsevier Ltd
    corecore