20 research outputs found

    Temperature-Associated Effects on Flavonol Content in Field-Grown Phaseolus vulgaris L. Zolfino del Pratomagno

    Get PDF
    Combining the need to increase local Phaseolus vulgaris L. production, with the objective of identifying which abiotic inductors (irrigation and temperature) and/or elicitors (nitrogen fertilizer treatment) can be used as potential strategies to improve flavonol content, open-field experiments were conducted in Pisa and Bologna (Italy) over two years, using the local landrace of interest \u201cZolfino del Pratomagno\u201d, and a commercial variety, Verdone. Full-irrigation and nitrogen treatment, individually, and in combination, increased yield and decreased flavonols, respectively, in both genotypes and locations. Yield, under all treatments, was significantly higher in Pisa (17.5\u2013 21.9 \ub0C) than Bologna (21.4\u201324.8 \ub0C) for Verdone, but was the equivalent for Zolfino. An inverse correlation between average mean temperature and flavonol content was evident only in Zolfino. The feasibility of increasing dietary flavonol production using decreasing temperature as a strategy with some degree of control was then tested by cultivating Zolfino at different altitudes (108 (24 \ub0C) to 800 m a.s.l. (18 \ub0C)) in Pratomagno. Increasing the altitude induced a significant 3-fold increase in seed-coat kaempferol glycosides, comprising more than 95% of the total flavonols. Temperatureassociated effects on flavonol synthesis warrants consideration when selecting a cultivation environment to augment the kaempferol-based, anticarcinogenic benefits of Zolfino

    Agronomic, nutritional and nutraceutical aspects of durum wheat (Triticum durum Desf.) cultivars under low input agricultural management

    Get PDF
    Among cereals, durum wheat has a central role in the Italian diet and economy, where there is a historical tradition of pasta making. In the present study, we evaluated the nutrient and nutraceutical properties of 2 old and 6 modern durum wheat varieties grown under low input agricultural management. Considering the lack of available data on the adaptability of existing durum wheat varieties to the low input and organic sectors, the research aimed at providing a complete description of the investigated genotypes, considering the agronomic performance as well as the nutrient and phytochemical composition. The experimental trials were carried out at the same location (Bologna, Northern Italy) for two consecutive growing seasons (2006/2007, 2007/2008). No clear distinction between old and modern varieties was observed in terms of grain yield (mean values ranging from 2.5 to 4.0 t/ha), highlighting that the divergence in productivity, normally found between dwarf and non-dwarf genotypes, is strongly reduced when they are cropped under low input management. All durum wheat varieties presented high protein levels and, in addition, provided remarkable amounts of phytochemicals such as dietary fibre, polyphenols, flavonoids and carotenoids. Some of the investigated genotypes, such as Senatore Cappelli, Solex, Svevo and Orobel, emerged with intriguing nutritional and phytochemical profiles, with the highest levels of dietary fibre and antioxidant compounds. The study provided the basis for further investigations into the adaptability of the durum wheat genotypes to low input management, for the selection of genotypes characterised by higher yield and valuable nutrient and nutraceutical quality
    corecore