337 research outputs found

    A Radical Solution to the Species Problem

    Full text link

    Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.

    Get PDF
    PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype

    How Biology Became Social and What It Means for Social Theory

    Get PDF
    In this paper I first offer a systematic outline of a series of conceptual novelties in the life-sciences that have favoured, over the last three decades, the emergence of a more social view of biology. I focus in particular on three areas of investigation: (1) technical changes in evolutionary literature that have provoked a rethinking of the possibility of altruism, morality and prosocial behaviours in evolution; (2) changes in neuroscience, from an understanding of the brain as an isolated data processor to the ultrasocial and multiply connected social brain of contemporary neuroscience; and (3) changes in molecular biology, from the view of the gene as an autonomous master of development to the ‘reactive genome’ of the new emerging field of molecular epigenetics. In the second section I reflect on the possible implications for the social sciences of this novel biosocial terrain and argue that the postgenomic language of extended epigenetic inheritance and blurring of the nature/nurture boundaries will be as provocative for neo-Darwinism as it is for the social sciences as we have known them. Signs of a new biosocial language are emerging in several social-science disciplines and this may represent an exciting theoretical novelty for twenty-first social theory

    Species as historical individuals

    Full text link
    The species category is defined as the smallest historical individual within which there is a parental pattern of ancestry and descent. The use of historical individual in this definition is consistent with the prevailing notion that species per se are not involved in processes — they are effects, not effectors. Reproductive isolation distinguishes biparental historical species from their parts, and it provides a basis for understanding the nature of the evidence used to discover historical individuals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42483/1/10539_2005_Article_BF02207380.pd

    Ecological and evolutionary consequences of alternative sex-change pathways in fish

    Get PDF
    Sequentially hermaphroditic fish change sex from male to female (protandry) or vice versa (protogyny), increasing their fitness by becoming highly fecund females or large dominant males, respectively. These life-history strategies present different social organizations and reproductive modes, from near-random mating in protandry, to aggregate- and harem-spawning in protogyny. Using a combination of theoretical and molecular approaches, we compared variance in reproductive success (V k*) and effective population sizes (N e) in several species of sex-changing fish. We observed that, regardless of the direction of sex change, individuals conform to the same overall strategy, producing more offspring and exhibiting greater V k* in the second sex. However, protogynous species show greater V k*, especially pronounced in haremic species, resulting in an overall reduction of N e compared to protandrous species. Collectively and independently, our results demonstrate that the direction of sex change is a pivotal variable in predicting demographic changes and resilience in sex-changing fish, many of which sustain highly valued and vulnerable fisheries worldwide

    The adaptive significance of cultural behavior

    Full text link
    In this article, I argue that human social behavior is a product of the coevolution of human biology and culture. While critical of attempts by anthropologists to explain cultural practices as if they were independent of the ability of individual human beings to survive and reproduce, I am also leery of attempts by biologists to explain the consistencies between neo-Darwinian theory and cultural behavior as the result of natural selection for that behavior. Instead, I propose that both biological and cultural attributes of human beings result to a large degree from the selective retention of traits that enhance the inclusive fitnesses of individuals in their environments. Aspects of human biology and culture may be adaptive in the same sense despite differences between the mechanisms of selection and regardless of their relative importance in the evolution of a trait. The old idea that organic and cultural evolution are complementary can thus be used to provide new explanations for why people do what they do .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44491/1/10745_2005_Article_BF01531215.pd
    • 

    corecore