34 research outputs found

    Interacting Electrons, Spin Statistics, and Information Theory

    Get PDF
    We consider a nearly (or quasi) uniform gas of interacting electrons for which spin statistics play a crucial role. A previously developed procedure, based on the extension of the Levy–Lieb constrained search principle and Monte Carlo sampling of electron configurations in space, allows us to approximate the form of the kinetic-energy functional. For a spinless electron gas, this procedure led to a correlation term, which had the form of the Shannon entropy, but the resulting kinetic-energy functional does not satisfy the Lieb–Thirring inequality, which is rigorous and one of the most general relations regarding the kinetic energy. In this paper, we show that when the fermionic character of the electrons is included via a statistical spin approach, our procedure leads to correlation terms, which also have the form of the Shannon entropy and the resulting kinetic-energy functional does satisfy the Lieb–Thirring inequality. In this way we further strengthen the connection between Shannon entropy and electron correlation and, more generally, between information theory and quantum mechanics

    Roadmap on Machine learning in electronic structure

    Get PDF
    In recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by faster, simpler, and often more accurate approaches. The new approaches, that we collectively label by machine learning, have their origins in the fields of informatics and artificial intelligence, but are making rapid inroads in all other branches of science. With this in mind, this Roadmap article, consisting of multiple contributions from experts across the field, discusses the use of machine learning in materials science, and share perspectives on current and future challenges in problems as diverse as the prediction of materials properties, the construction of force-fields, the development of exchange correlation functionals for density-functional theory, the solution of the many-body problem, and more. In spite of the already numerous and exciting success stories, we are just at the beginning of a long path that will reshape materials science for the many challenges of the XXIth century.</p

    Improved long-range reactive bond-order potential for carbon. II. Molecular simulation of liquid carbon

    Get PDF
    Contains fulltext : 32618.pdf (publisher's version ) (Open Access

    Improved long-range reactive bond-order potential for carbon. I. Construction

    Get PDF
    Contains fulltext : 32617.pdf (publisher's version ) (Open Access
    corecore