69 research outputs found

    Studies of plant terpenoid biosynthesis using 13C stable isotope labeling techniques (KIT Scientific Reports ; 7583)

    Get PDF
    This thesis aims to deepen our understanding of plant terpenoid biosynthesis and the regulation of the 2-C-methylerythritol-4-phosphate pathway (MEP) with respect to isoprene and monoterpene biosynthesis in plant. For this purposes, stable isotope techniques were employed, providing information on the carbon sources for terpenoids biosynthesis and C fluxes within the MEP pathway at various spatial and temporal scales, as well as giving insight into the regulation of enzymes from the MEP pathway

    Modeling Intra‐ and Interannual Variability of BVOC Emissions From Maize, Oil‐Seed Rape, and Ryegrass

    Get PDF
    Air chemistry is affected by the emission of biogenic volatile organic compounds (BVOCs), which originate from almost all plants in varying qualities and quantities. They also vary widely among different crops, an aspect that has been largely neglected in emission inventories. In particular, bioenergy-related species can emit mixtures of highly reactive compounds that have received little attention so far. For such species, long-term field observations of BVOC exchange from relevant crops covering different phenological phases are scarcely available. Therefore, we measured and modeled the emission of three prominent European bioenergy crops (maize, ryegrass, and oil-seed rape) for full rotations in north-eastern Germany. Using a proton transfer reaction–mass spectrometer combined with automatically moving large canopy chambers, we were able to quantify the characteristic seasonal BVOC flux dynamics of each crop species. The measured BVOC fluxes were used to parameterize and evaluate the BVOC emission module (JJv) of the physiology-oriented LandscapeDNDC model, which was enhanced to cover de novo emissions as well as those from plant storage pools. Parameters are defined for each compound individually. The model is used for simulating total compound-specific reactivity over several years and also to evaluate the importance of these emissions for air chemistry. We can demonstrate substantial differences between the investigated crops with oil-seed rape having 37-fold higher total annual emissions than maize. However, due to a higher chemical reactivity of the emitted blend in maize, potential impacts on atmospheric OH-chemistry are only 6-fold higher

    A new modelling approach for estimating abiotic and biotic stress-induced de novo emissions of biogenic volatile organic compounds from plants

    Get PDF
    The emission of biogenic volatile organic compounds (BVOCs) is usually thought to depend on species-specific emission capacities that vary with seasonal and phenological conditions. Actual—so called constitutive—emissions are then calculated from prevailing temperature and radiation. However, various abiotic and biotic stressors such as ozone, extreme radiation and temperature conditions, as well as wounding e.g., from insect feeding, can lead to de-novo emissions of stress-induced BVOCs (sBVOCs) that may excel constitutive emissions by more than an order of magnitude. These emissions often have a considerable different compound composition and are short-lived but can prolong under continuous stress for quite some time. Thus, they may easily have a large impact on overall regional BVOC emissions. However, sBVOCs are generally not considered in models since up to date no consistent mechanism has been proposed. This manuscript suggests a new mechanism based on the finding that sBVOCs originate from a handful of biosynthetic pathways which synthesize compounds in the groups of monoterpenes, sesquiterpenes, and green leave volatiles, as well as methyl salicylate, ethanol/acetaldehyde, methanol/formaldehyde, and acetone. Isoprene is also considered but since it is often constitutively emitted, the specific role of stress induction is difficult to determine for this compound. A function is proposed that describes the production of all de-novo sBVOCs sufficiently well and scales with stress intensity. It is hypothesized that the response delay and the form of the function is specific for the production pathway and valid for ozone as well as wounding (herbivory) induced stress. Model parameters are then derived from pooled literature data based on a meta-analysis of suitable induction-response measurements of different plant species. The overall emission amount derives from the intensity and frequency of the stress impulse. We present a number of literature studies that are used to parameterize the new model as well as a selection of evaluations for single- and multiple-stress inductions. Furthermore, coupling and interaction with constitutive emission models as well as limitations and possible further developments are discussed

    Trichoderma Species Differ in Their Volatile Profiles and in Antagonism Toward Ectomycorrhiza Laccaria bicolor

    Get PDF
    Fungi of the genus Trichoderma are economically important due to their plant growth- and performance-promoting effects, such as improved nutrient supply, mycoparasitism of plant-pathogens and priming of plant defense. Due to their mycotrophic lifestyle, however, they might also be antagonistic to other plant-beneficial fungi, such as mycorrhiza-forming species. Trichoderma spp. release a high diversity of volatile organic compounds (VOCs), which likely play a decisive role in the inter-species communication. It has been shown that Trichoderma VOCs can inhibit growth of some plant pathogens, but their inhibition potentials during early interactions with mutualistic fungi remain unknown. Laccaria bicolor is a common ectomycorrhizal fungus which in symbiotic relationship is well known to facilitate plant performance. Here, we investigated the VOC profiles of three strains of Trichoderma species, Trichoderma harzianum, Trichoderma Hamatum, and Trichoderma velutinum, as well as L. bicolor by stir bar sorptive extraction and gas chromatography – mass spectrometry (SBSE-GC-MS). We further examined the fungal performance and the VOC emission profiles during confrontation of the Trichoderma species with L. bicolor in different co-cultivation scenarios. The VOC profiles of the three Trichoderma species were highly species-dependent. T. harzianum was the strongest VOC emitter with the most diverse compound pattern, followed by T. hamatum and T. velutinum. Co-cultivation of Trichoderma spp. and L. bicolor altered the VOC emission patterns dramatically in some scenarios. The co-cultivations also revealed contact degree-dependent inhibition of one of the fungal partners. Trichoderma growth was at least partially inhibited when sharing the same headspace with L. bicolor. In direct contact between both mycelia, however, L. bicolor growth was impaired, indicating that Trichoderma and L. bicolor apply different effectors when defending their territory. Multivariate analysis demonstrated that all examined individual fungal species in axenic cultures, as well as their co-cultivations were characterized by a distinct VOC emission pattern. The results underline the importance of VOCs in fungal interactions and reveal unexpected adjustability of the VOC emissions according to the specific biotic environments

    Prevalence of Klebsiella pneumoniae strains producing carbapenemases and increase of resistance to colistin in an Italian teaching hospital from January 2012 To December 2014

    Get PDF
    The aim of this study was to characterize the spread of carbapenemase-producing Klebsiella pneumoniae (CPKP) in a tertiary level hospital using ongoing active surveillance with rectal swab cultures. Furthermore, this study analyzed the presence of CPKP in the clinical samples (CS) of a single patient as well as the evolution of Colistin-sensitive strains (CoS) to Colistin-resistant strains (CoR)

    Biogenic Volatile Organic Compound and Respiratory CO2 Emissions after 13C-Labeling: Online Tracing of C Translocation Dynamics in Poplar Plants

    Get PDF
    Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important.We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission.In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%).We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux
    corecore