536 research outputs found

    Identical particles and entanglement

    Full text link
    We review two general criteria for deciding whether a pure bipartite quantum state describing a system of two identical particles is entangled or not. The first one considers the possibility of attributing a complete set of objective properties to each particle belonging to the composed system, while the second is based both on the consideration of the Slater-Schmidt number of the fermionic and bosonic analog of the Schmidt decomposition and on the evaluation of the von Neumann entropy of the one-particle reduced statistical operators.Comment: 8 pages; Latex; Talk delivered at the International Conference on Quantum Optics 2004, Minsk, Belaru

    General criterion for the entanglement of two indistinguishable particles

    Full text link
    We relate the notion of entanglement for quantum systems composed of two identical constituents to the impossibility of attributing a complete set of properties to both particles. This implies definite constraints on the mathematical form of the state vector associated with the whole system. We then analyze separately the cases of fermion and boson systems, and we show how the consideration of both the Slater-Schmidt number of the fermionic and bosonic analog of the Schmidt decomposition of the global state vector and the von Neumann entropy of the one-particle reduced density operators can supply us with a consistent criterion for detecting entanglement. In particular, the consideration of the von Neumann entropy is particularly useful in deciding whether the correlations of the considered states are simply due to the indistinguishability of the particles involved or are a genuine manifestation of the entanglement. The treatment leads to a full clarification of the subtle aspects of entanglement of two identical constituents which have been a source of embarrassment and of serious misunderstandings in the recent literature.Comment: 18 pages, Latex; revised version: Section 3.2 rewritten, new Theorems added, reference [1] corrected. To appear on Phys.Rev.A 70, (2004

    Conservation laws, uncertainty relations, and quantum limits of measurements

    Get PDF
    The uncertainty relation between the noise operator and the conserved quantity leads to a bound for the accuracy of general measurements. The bound extends the assertion by Wigner, Araki, and Yanase that conservation laws limit the accuracy of ``repeatable'', or ``nondisturbing'', measurements to general measurements, and improves the one previously obtained by Yanase for spin measurements. The bound also sets an obstacle to making a small quantum computer.Comment: 4 pages, RevTex, to appear in PR

    A test of Local Realism with entangled kaon pairs and without inequalities

    Full text link
    We propose the use of entangled pairs of neutral kaons, considered as a promising tool to close the well known loopholes affecting generic Bell's inequality tests, in a specific Hardy-type experiment. Hardy's contradiction without inequalities between Local Realism and Quantum Mechanics can be translated into a feasible experiment by requiring ideal detection efficiencies for only one of the observables to be alternatively measured. Neutral kaons are near to fulfil this requirement and therefore to close the efficiency loophole.Comment: 4 RevTeX page

    Quantum open systems and turbulence

    Full text link
    We show that the problem of non conservation of energy found in the spontaneous localization model developed by Ghirardi, Rimini and Weber is very similar to the inconsistency between the stochastic models for turbulence and the Navier-Stokes equation. This sort of analogy may be useful in the development of both areas.Comment: to appear in Physical Review

    Stochastic Schroedinger Equations with General Complex Gaussian Noises

    Full text link
    Within the framework of stochastic Schroedinger equations, we show that the correspondence between statevector equations and ensemble equations is infinitely many to one, and we discuss the consequences. We also generalize the results of [Phys. Lett. A 224, p. 25 (1996)] to the case of more general complex Gaussian noises and analyze the two important cases of purely real and purely imaginary stochastic processes.Comment: 5 pages, LaTeX. To appear on Phys. Rev.

    A Distributed IoT Infrastructure to Test and Deploy Real-Time Demand Response in Smart Grids

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this paper, we present a novel distributed framework for real-time management and co-simulation of demand response (DR) in smart grids. Our solution provides a (near-) real-time co-simulation platform to validate new DR-policies exploiting Internet-of-Things approach performing software-in-the-loop. Hence, the behavior of real-world power systems can be emulated in a very realistic way and different DR-policies can be easily deployed and/or replaced in a plug-and-play fashion, without affecting the rest of the framework. In addition, our solution integrates real Internet-connected smart devices deployed at customer premises and along the smart grid to retrieve energy information and send actuation commands. Thus, the framework is also ready to manage DR in a real-world smart grid. This is demonstrated on a realistic smart grid with a test case DR-policy

    Backward Evolving Quantum States

    Get PDF
    The basic concept of the two-state vector formalism, which is the time symmetric approach to quantum mechanics, is the backward evolving quantum state. However, due to the time asymmetry of the memory's arrow of time, the possible ways to manipulate a backward evolving quantum state differ from those for a standard, forward evolving quantum state. The similarities and the differences between forward and backward evolving quantum states regarding the no-cloning theorem, nonlocal measurements, and teleportation are discussed. The results are relevant not only in the framework of the two-state vector formalism, but also in the framework of retrodictive quantum theory.Comment: Contribution to the J.Phys. A special issue in honor of GianCarlo Ghirard

    A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions

    Get PDF
    Continuous photoproduction of H-2 by the green alga, Chlamydomonas reinhardtii, is observed after incubating the cultures for about a day in the absence of sulfate and in the presence of acetate. Sulfur deprivation causes the partial and reversible inactivation of photosynthetic O-2 evolution in algae, resulting in the light-induced establishment of anaerobic conditions in sealed photobioreactors, expression of two [FeFe]-hydrogenases in the cells, and H-2 photoproduction for several days. We have previously demonstrated that sulfur-deprived algal cultures can produce H-2 gas in the absence of acetate, when appropriate experimental protocols were used (Tsygankov, A.A., Kosourov, S.N., Tolstygina, IN., Ghirardi, M.L., Seibert, M., 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energy 31, 1574-1584). We now report the use of an automated photobioreactor system to compare the effects of photoautotrophic, photoheterotrophic and photomixotrophic growth conditions on the kinetic parameters associated with the adaptation of the algal cells to sulfur deprivation and H-2 photoproduction. This was done under the experimental conditions outlined in the above reference, including controlled pH. From this comparison we show that both acetate and CO2 are required for the most rapid inactivation of photosystem II and the highest yield of H-2 gas production. Although, the presence of acetate in the system is not critical for the process, H-2 photoproduction under photoautotrophic conditions can be increased by optimizing the conditions for high starch accumulation. These results suggest ways of engineering algae to improve H-2 production, which in turn may have a positive impact on the economics of applied systems for H,, production. (c) 2007 Elsevier B.V. All rights reserved
    corecore