65 research outputs found

    Quantitative Kinematic Characterization of Reaching Impairments in Mice After a Stroke

    Get PDF
    Background and Objective. Kinematic analysis of reaching movements is increasingly used to evaluate upper extremity function after cerebrovascular insults in humans and has also been applied to rodent models. Such analyses can require time-consuming frame-by-frame inspections and are affected by the experimenter's bias. In this study, we introduce a semi-automated algorithm for tracking forepaw movements in mice. This methodology allows us to calculate several kinematic measures for the quantitative assessment of performance in a skilled reaching task before and after a focal cortical stroke. Methods. Mice were trained to reach for food pellets with their preferred paw until asymptotic performance was achieved. Photothrombosis was then applied to induce a focal ischemic injury in the motor cortex, contralateral to the trained limb. Mice were tested again once a week for 30 days. A high frame rate camera was used to record the movements of the paw, which was painted with a nontoxic dye. An algorithm was then applied off-line to track the trajectories and to compute kinematic measures for motor performance evaluation. Results. The tracking algorithm proved to be fast, accurate, and robust. A number of kinematic measures were identified as sensitive indicators of poststroke modifications. Based on end-point measures, ischemic mice appeared to improve their motor performance after 2 weeks. However, kinematic analysis revealed the persistence of specific trajectory adjustments up to 30 days poststroke, indicating the use of compensatory strategies. Conclusions. These results support the use of kinematic analysis in mice as a tool for both detection of poststroke functional impairments and tracking of motor improvements following rehabilitation. Similar studies could be performed in parallel with human studies to exploit the translational value of this skilled reaching analysis

    Epidemiology and Surgical Management of Foreign Bodies in the Liver in the Pediatric Population: A Systematic Review of the Literature

    Get PDF
    Retention of foreign bodies (FB) in the liver parenchyma is a rare event in children but it can bring a heavy burden in terms of immediate and long-term complications. Multiple materials can migrate inside the liver. Clinical manifestations may vary, depending on the nature of the foreign body, its route of penetration and timing after the initial event. Moreover, the location of the FB inside the liver parenchyma may pose specific issues related to the possible complications of a challenging surgical extraction. Different clinical settings and the need for highly specialized surgical skills may influence the overall management of these children. Given the rarity of this event, a systematic review of the literature on this topic was conducted and confirmed the pivotal role of surgery in the pediatric population

    Epidemiology and Surgical Management of Foreign Bodies in the Liver in the Pediatric Population: A Systematic Review of the Literature

    Get PDF
    Retention of foreign bodies (FB) in the liver parenchyma is a rare event in children but it can bring a heavy burden in terms of immediate and long-term complications. Multiple materials can migrate inside the liver. Clinical manifestations may vary, depending on the nature of the foreign body, its route of penetration and timing after the initial event. Moreover, the location of the FB inside the liver parenchyma may pose specific issues related to the possible complications of a challenging surgical extraction. Different clinical settings and the need for highly specialized surgical skills may influence the overall management of these children. Given the rarity of this event, a systematic review of the literature on this topic was conducted and confirmed the pivotal role of surgery in the pediatric population

    Angiotensin-II drives human satellite cells toward hypertrophy and myofibroblast trans-differentiation by two independent pathways

    Get PDF
    Skeletal muscle regeneration is ensured by satellite cells (SC), which upon activation undergo self-renewal and myogenesis. The correct sequence of healing events may be offset by inflammatory and/or fibrotic factors able to promote fibrosis and consequent muscle wasting. Angiotensin-II (Ang) is an effector peptide of the renin angiotensin system (RAS), of which the direct role in human SCs (hSCs) is still controversial. Based on the hypertrophic and fibrogenic effects of Ang via transient receptor potential canonical (TRPC) channels in cardiac and renal tissues, we hypothesized a similar axis in hSCs. Toward this aim, we demonstrated that hSCs respond to acute Ang stimulation, dose-dependently enhancing p-mTOR, p-AKT, p-ERK1/2 and p-P38. Additionally, sub-acute Ang conditioning increased cell size and promoted trans-differentiation into myofibroblasts. To provide a mechanistic hypothesis on TRPC channel involvement in the processes, we proved that TRPC channels mediate a basal calcium entry into hSCs that is stimulated by acute Ang and strongly amplified by sub-chronic Ang conditioning. Altogether, these findings demonstrate that Ang induces a fate shift of hSCs into myofibroblasts and provide a basis to support a benefit of RAS and TRPC channel blockade to oppose muscle fibrosis

    Case Report: Gut and spleen anomalies associated with DYRK1A syndrome

    Get PDF
    DYRK1A syndrome has been extensively studied primarily with regard to neurologic and other phenotypic features such as skeleton and craniofacial alterations. In the present paper, we aim to highlight unusual anomalies associated with a DYRK1A mutation: a 17-year-old female patient with language and cognitive delay, microcephaly, and an autistic disorder, who was operated upon for spleen torsion with anomalous gut fixation

    Case Report: Gut and spleen anomalies associated with DYRK1A syndrome

    Get PDF
    DYRK1A syndrome has been extensively studied primarily with regard to neurologic and other phenotypic features such as skeleton and craniofacial alterations. In the present paper, we aim to highlight unusual anomalies associated with a DYRK1A mutation: a 17-year-old female patient with language and cognitive delay, microcephaly, and an autistic disorder, who was operated upon for spleen torsion with anomalous gut fixation

    Corticosteroid effect upon intestinal and hepatic interleukin profile in a gastroschisis rat model

    Full text link
    PURPOSE: To evaluate the effect of corticosteroids on intestinal and liver interleukin profile in an experimental model of gastroschisis in fetal rats. METHODS: Sprague-Dawley rats at 19.5 days of gestation had its fetuses operated for the creation of gastroschisis. Two groups of fetuses were studied with and without maternal administration of dexamethasone. Each group was composed of fetuses who underwent gastroschisis (G), control fetuses without manipulation (C) and sham fetuses (S). A dosage of the following interleukins was carried out in fetal intestinal and liver tissues: IL-1, IL-6, IL-10, tumor necrosis factor-alpha (TNF-&#945;) and interferon-gamma (IFN-&#947;). The differences between the groups and subgroups were tested by ANOVA with Tukey post-test, with significant values of p<0.05. RESULTS: Dexamethasone led to an increase in intestinal and liver IL-6 (p<0.05) and a decrease in intestinal TNF-&#945; (p<0.001) in fetuses with gastroschisis. CONCLUSION: Corticosteroids had an effect on the intestinal interleukin profile and a small effect on the liver interleukin profile due to immunological immaturity of the fetus, and also of fetuses with gastroschisis. The steroid action may not be exclusively anti-inflammatory, but also pro-inflammatory, varying with time of pregnancy

    Activation of Regulatory T Cells during Inflammatory Response Is Not an Exclusive Property of Stem Cells

    Get PDF
    BACKGROUND: Sepsis and systemic-inflammatory-response-syndrome (SIRS) remain major causes for fatalities on intensive care units despite up-to-date therapy. It is well accepted that stem cells have immunomodulatory properties during inflammation and sepsis, including the activation of regulatory T cells and the attenuation of distant organ damage. Evidence from recent work suggests that these properties may not be exclusively attributed to stem cells. This study was designed to evaluate the immunomodulatory potency of cellular treatment during acute inflammation in a model of sublethal endotoxemia and to investigate the hypothesis that immunomodulations by cellular treatment during inflammatory response is not stem cell specific. METHODOLOGY/PRINCIPAL FINDINGS: Endotoxemia was induced via intra-peritoneal injection of lipopolysaccharide (LPS) in wild type mice (C3H/HeN). Mice were treated with either vital or homogenized amniotic fluid stem cells (AFS) and sacrificed for specimen collection 24 h after LPS injection. Endpoints were plasma cytokine levels (BD™ Cytometric Bead Arrays), T cell subpopulations (flow-cytometry) and pulmonary neutrophil influx (immunohistochemistry). To define stem cell specific effects, treatment with either vital or homogenized human-embryonic-kidney-cells (HEK) was investigated in a second subset of experiments. Mice treated with homogenized AFS cells showed significantly increased percentages of regulatory T cells and Interleukin-2 as well as decreased amounts of pulmonary neutrophils compared to saline-treated controls. These results could be reproduced in mice treated with vital HEK cells. No further differences were observed between plasma cytokine levels of endotoxemic mice. CONCLUSIONS/SIGNIFICANCE: The results revealed that both AFS and HEK cells modulate cellular immune response and distant organ damage during sublethal endotoxemia. The observed effects support the hypothesis, that immunomodulations are not exclusive attributes of stem cells
    • …
    corecore