34 research outputs found

    Transition and post-transition metals in exhaled breath condensate

    Get PDF
    Water vapor in expired air, as well as dispersed non-volatile components, condense onto a cooler surface after exiting the respiratory tract. This exhaled breath condensate (EBC) provides a dilute sampling of the epithelial lining fluid. Accordingly, the collection of EBC imparts a capacity to provide biomarkers of injury preceding clinical disease. Concentrations of transition and post-transition metals in EBC are included among these endpoints. Iron and zinc are the metals with the highest concentration and are measurable in all EBC samples from healthy subjects; other metals are most frequently either at or below the level of detection in this group. Gender, age, and smoking can impact EBC metal concentrations in healthy subjects. EBC metal concentrations among patients diagnosed with particular lung diseases (e.g. asthma, chronic obstructive disease, and interstitial lung disease) have been of research interest but no definite pattern of involvement has been delineated. Studies of occupationally exposed workers confirm significant exposure to specific metals, but such EBC metal measurements frequently provide evidence redundant with environmental sampling. Measurements of metal concentrations in EBC remain a research tool into metal homeostasis in the respiratory tract and participation of metals in disease pathogenesis. The quantification of metal concentrations in EBC is currently not reliable for clinical use in either supporting or determining any diagnosis. Issues that must be addressed prior to the use of EBC metal measurements include the establishment of both standardized collection and measurement techniques

    Iron concentration in exhaled breath condensate decreases in ever-smokers and COPD patients

    Get PDF
    Investigation employing bronchoalveolar lavage supports both increased and decreased iron concentrations in the epithelial lining fluid (ELF) of smokers. Exhaled breath condensate (EBC) is an alternative approach to sampling the ELF. We evaluated for an association between iron homeostasis and both smoking and a diagnosis of chronic obstructive pulmonary disease (COPD) by measuring metal concentrations in EBC samples from non-smoker controls, smoker controls, and individuals diagnosed with COPD. The total number of EBC specimens was 194. EBC iron and zinc concentrations (mean ±standard error) in the total study population were 0.610 ±0.025 and 40.73 ±1.79 ppb respectively. In linear regressions, total cigarette smoking in pack years showed a significant (negative) relationship with EBC iron concentration but not with EBC zinc concentration. Iron concentrations in EBC from GOLD stage II, III, and IV patients were all significantly decreased relative to those from non-smoker and smoker controls. In contrast to iron, zinc concentrations in EBC were not significantly different than those from non-smoker and smoker controls. It is concluded that smoking decreases EBC iron concentrations and patients diagnosed with COPD have significantly lower EBC iron concentrations. These results likely reflect an increased burden of cigarette smoke particles in the lower respiratory tract of ever-smokers and patients with COPD and the capacity of components in this particle to complex iron

    Chronic E-cigarette use increases neutrophil elastase and matrix metalloprotease levels in the lung

    Get PDF
    Rationale: Proteolysis is a key aspect of the lung's innate immune system. Proteases, including neutrophil elastase and MMPs (matrix metalloproteases), modulate cell signaling, inflammation, tissue remodeling, and leukocyte recruitment via cleavage of their target proteins. Excessive proteolysis occurs with chronic tobacco use and is causative for bronchiectasis and emphysema. The effect of e-cigarettes (vaping) on proteolysis is unknown. Objectives: We used protease levels as biomarkers of harm to determine the impact of vaping on the lung. Methods: We performed research bronchoscopies on healthy nonsmokers, cigarette smokers, and e-cigarette users (vapers), and determined protease levels in BAL. In parallel, we studied the effects of e-cigarette components on protease secretion in isolated human blood neutrophils and BAL-derived macrophages. We also analyzed the nicotine concentration in induced sputum and BAL. Measurements and Main Results: Neutrophil elastase, MMP-2, and MMP-9 activities and protein levels were equally elevated in both vapers' and smokers' BAL relative to nonsmokers. In contrast, antiprotease levels were unchanged. We also found that exposure of isolated neutrophils and macrophages to nicotine elicited dose-dependent increases in protease release. After vaping, measurable levels of nicotine were detectable in sputum and BAL, which corresponded to the half-maximal effective concentration values for protease release seen in immune cells. Conclusions:We conclude that vaping induces nicotine-dependent protease release from resident pulmonary immune cells. Thus, chronic vaping disrupts the protease-antiprotease balance by increasing proteolysis in lung, which may place vapers at risk of developing chronic lung disease. These data indicate that vaping may not be safer than tobacco smoking

    Cellular and biochemical response of the human lung after intrapulmonary instillation of ferric oxide particles

    Get PDF
    Bronchoalveolar lavage (BAL) was used to sample lung cells and biochemical components in the lung air spaces at various times from 1 to 91 d after intrapulmonary instillation of 2.6 μm-diameter iron oxide particles in human subjects. The instillation of particles induced transient acute inflammation during the first day post instillation (PI), characterized by increased numbers of neutrophils and alveolar macrophages as well as increased amounts of protein, lactate dehydrogenase, and interleukin-8 in BAL fluids. This response was subclinical and was resolved within 4 d PI. A similar dose-dependent response was seen in rats 1 d after intratracheal instillation of the same particles. The particles contained small amounts of soluble iron (240 ng/mg) and possessed the capacity to catalyze oxidant generation in vitro. Our findings indicate that the acute inflammation after particle exposure may, at least partially, be the result of oxidant generation catalyzed by the presence of residual amounts of ferric ion, ferric hydroxides, or oxyhydroxides associated with the particles. These findings may have relevance to the acute health effects associated with increased levels of ambient particulate air pollutants

    Neuropilin-2 regulates airway inflammatory responses to inhaled lipopolysaccharide

    Get PDF
    Neuropilins are multifunctional receptors that play important roles in immune regulation. Neuropilin-2 (NRP2) is expressed in the lungs, but whether it regulates airway immune responses is unknown. Here, we report that Nrp2 is weakly expressed by alveolar macrophages (AMs) in the steady state but is dramatically upregulated following in vivo lipopolysaccharide (LPS) inhalation. Ex vivo treatment of human AMs with LPS also increased NRP2 mRNA expression and cell-surface display of NRP2 protein. LPS-induced Nrp2 expression in AMs was dependent upon the myeloid differentiation primary response 88 signaling pathway and the transcription factor NF-κB. In addition to upregulating display of NRP2 on the cell membrane, inhaled LPS also triggered AMs to release soluble NRP2 into the airways. Finally, myeloid-specific ablation of NRP2 resulted in increased expression of the chemokine (C-C motif) ligand 2 (Ccl2) in the lungs and prolonged leukocyte infiltration in the airways following LPS inhalation. These findings suggest that NRP2 expression by AMs regulates LPS-induced inflammatory cell recruitment to the airways and reveal a novel role for NRP2 during innate immune responses in the lungs

    Loss of β Epithelial Sodium Channel Function in Meibomian Glands Produces Pseudohypoaldosteronism 1–Like Ocular Disease in Mice

    Get PDF
    Human subjects with pseudohypoaldosteronism-1 because of loss-of-function mutations in epithelial sodium channel (ENaC) subunits exhibit meibomian gland (MG) dysfunction. A conditional βENaC MG knockout (KO) mouse model was generated to elucidate the pathogenesis of absent ENaC function in the MG and associated ocular surface disease. βENaC MG KO mice exhibited a striking age-dependent, female-predominant MG dysfunction phenotype, with white toothpaste–like secretions observed obstructing MG orifices at 7 weeks of age. There were compensatory increases in tear production but higher tear sodium and indexes of mucin concentration in βENaC MG KO mice. Histologically, MG acinar atrophy was observed with ductal enlargement and ductal epithelial hyperstratification. Inflammatory cell infiltration was observed in both MG and conjunctiva of βENaC MG KO mice. In older βENaC MG KO mice (5 to 11 months), significant ocular surface pathologies were noted, including corneal opacification, ulceration, neovascularization, and ectasia. Inflammation in MG and conjunctiva was confirmed by increased cytokine gene and protein expression and positive Ly-6B.2 immunostaining. Cell proliferation assays revealed lower proliferation rates of MG cells derived from βENaC MG KO than control mice, suggesting that βENaC plays a role in cell renewal of mouse MG. Loss of βENaC function resulted in MG disease and severe ocular surface damage that phenocopied aspects of human pseudohypoaldosteronism-1 MG disease and was sex dependent

    Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium

    Get PDF
    AbstractWe studied the effects of airborne particulate matters (PM) on cystic fibrosis (CF) epithelium. We noted that PM enhanced human CF bronchial epithelial apoptosis, activated caspase-9 and PARP-1; and reduced mitochondrial membrane potential. Mitochondrial inhibitors (4,4-diisothiocyanatostilbene-2,2′disulfonic acid, rotenone and thenoyltrifluoroacetone) blocked PM-induced generation of reactive oxygen species and apoptosis. PM upregulated pro-apoptotic Bad, Bax, p53 and p21; and enhanced mitochondrial localization of Bax. The anti-apoptotic Bcl-2, Bcl-xl, Mcl-1 and Xiap remained unchanged; however, overexpression of Bcl-xl blocked PM-induced apoptosis. Accordingly, we provide the evidence that PM enhances oxidative stress and mitochondrial signaling mediated apoptosis via the modulation of Bcl family proteins in CF

    Bim mediates mitochondria-regulated particulate matter-induced apoptosis in alveolar epithelial cells

    Get PDF
    AbstractWe studied the role of Bim, a pro-apoptotic BCL-2 family member in Airborne particulate matter (PM 2.5μm)-induced apoptosis in alveolar epithelial cells (AEC). PM induced AEC apoptosis by causing significant reduction of mitochondrial membrane potential and increase in caspase-9, caspase-3 and PARP-1 activation. PM upregulated pro-apoptotic protein Bim and enhanced translocation of Bim to the mitochondria. ShRNABim blocked PM-induced apoptosis by preventing activation of the mitochondrial death pathway suggesting a role of Bim in the regulation of mitochondrial pathway in AEC. Accordingly, we provide the evidence that Bim mediates PM-induced apoptosis via mitochondrial pathway
    corecore