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Abstract
Water vapor in expired air, as well as dispersed non-volatile components, condense onto a cooler
surface after exiting the respiratory tract. This exhaled breath condensate (EBC) provides a dilute
sampling of the epithelial lining fluid. Accordingly, the collection of EBC imparts a capacity to provide
biomarkers of injury preceding clinical disease. Concentrations of transition and post-transition
metals in EBC are included among these endpoints. Iron and zinc are themetals with the highest
concentration and aremeasurable in all EBC samples fromhealthy subjects; othermetals aremost
frequently either at or below the level of detection in this group. Gender, age, and smoking can impact
EBCmetal concentrations in healthy subjects. EBCmetal concentrations among patients diagnosed
with particular lung diseases (e.g. asthma, chronic obstructive disease, and interstitial lung disease)
have been of research interest but no definite pattern of involvement has been delineated. Studies of
occupationally exposedworkers confirm significant exposure to specificmetals, but such EBCmetal
measurements frequently provide evidence redundant with environmental sampling.Measurements
ofmetal concentrations in EBC remain a research tool intometal homeostasis in the respiratory tract
and participation ofmetals in disease pathogenesis. The quantification ofmetal concentrations in
EBC is currently not reliable for clinical use in either supporting or determining any diagnosis. Issues
thatmust be addressed prior to the use of EBCmetalmeasurements include the establishment of both
standardized collection andmeasurement techniques.

1. Introduction

As a result of a large surface area (50–75 m2), a
considerable volume of water is lost daily from the
human body through its evaporation from the epithe-
lial lining fluid of the respiratory tract [1]. Whilemuch
of this volume is water vapor, a small fraction
represents aerosol droplets generated through an
action of turbulent flow on the epithelial lining fluid
[2], or by the opening and closing of small airways [3].
Following this aerosolization, non-volatile molecules
are dispersed into the water vapor. Water vapor in
expired air, as well as the dispersed non-volatile
components, condense onto a cooler surface after
exiting the respiratory tract. Instrumentation can be
added to lower the temperature of the surface and
augment collection. This liquid sampling obtained
from a subject, typically breathing at tidal breathing, is
exhaled breath condensate (EBC).

The human respiratory tract represents the route
of entry for many environmental and occupational
exposures. Accordingly, volatile and non-volatile sub-
stances in EBC can function as biomarkers since con-
centrations can be impacted by these exposures. Such
biomarkers may potentially precede evidence of injury
and therefore predict clinical disease. Concentrations
of transition and post-transition metals in EBC are
included among these endpoints.

2.Metals in the respiratory tract

Transition and post-transition metals were selected in
molecular evolution to carry out a wide range of
biological functions and are required by all living
organisms. They are utilized in almost every aspect of
normal cell function and are particularly crucial for
cellular metabolism. Consequently, almost all living
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rather than as a duration of time [14]. A device with
audio and visual prompts can also be employed to
control the respiratory rate, tidal volume, and expired
volume and to terminate the effort [15].

At the low concentrations measured in EBC,metal
contamination during the collection is a concern. The
specific collection device can impact metal concentra-
tions [16, 17]. To minimize metal contamination, the
condensing surface should be a plastic polymer or
fluoropolymer. The plasticware which the EBC is col-
lected into should be disposable. Alternatively, com-
ponents can be acid washed prior to use in an effort to
diminishmetal contamination.

Contamination of EBC due to metals included in
particles in ambient air should be considered and
eliminated if possible. All metals in the atmosphere,
except for mercury, are associated with particles [18].
If one assumes that (1) a tidal volume of 0.5 L, (2) a
respiratory rate of 20 min−1, (3) a collection time of
10 min, (4) an ambient particulate level of 20 μg m−3,
(5) a metal composition in the particles of 1%, and (6)
lung deposition of particles which approximates 50%,
it is calculated that with the collection of the exhaled
particles, the metal concentrations could approximate
levels of parts per billion [19]:

(1) 0.5 L breath−1 (tidal volume)×20 breaths per
minute×10 min=100 L or 0.1 m3 (inspired
volume over 10 min of collection);

(2) 0.1 m3 (inspired volume)×20 μg m−3 (particle
level)=2 μg (particle mass in the inspired
volume over 10 min of collection);

(3) 2 μg (particle mass)×50% (percentage not
retained and expired) 1 ml−1 (volume of
EBC)=1 μg particle 2 ml−1 EBC;

(4) 1 μg particle 2 ml−1 EBC×1% metals=5 ppb
metals (mass per volume).

With investigations providing measurements of
metals in parts per trillion, particles in the ambient air
potentially impact the results. This is particularly true
with occupational studies where the ambient particle
levels are elevated and there is a higher metal content
(e.g. welders). An appropriately-sized filter attached to
the inlet of the breathing train can be used to reduce
the exposure to particles during EBC collection.

4.Measurements ofmetal concentrations
in EBC

Metals in bronchoalveolar lavage (BAL) and EBC can
be quantified using graphite furnace atomic absorp-
tion spectrometry (GFAAS) and inductively coupled
plasma mass spectrometry (ICPMS). Detection limits
for both GFAAS and ICPMS for metals are excellent.
However, the ICPMS can measure more elements
(greater than 75), has multi-element capability, and

organisms require metals, including iron, zinc, cop-
per, chromium, cobalt, manganese, molybdenum, 
nickel, tin, and vanadium.

Cells resident in the lung express proteins which 
participate in the import, export, storage, and trans-
port of metals (e.g. divalent metal transporter I, ferro-
portin I, ferritin, and transferrin receptor respectively)
[4]. Metal uptake by non-diseased, non-exposed lung 
with systemic translocation has been demonstrated 
[5]. However, the positioning of these proteins does 
not support metal uptake with systemic translocation 
to meet nutritional requirements as a normal function 
for which the lung was designed [6].

While all cells in the lower respiratory tract partici-
pate in metal homeostasis, the handling of metals is a 
primary responsibility of airway and alveolar macro-
phages [7, 8]. The macrophage has a capacity to mobi-
lize, import, store, and release metals for transport to 
tissues of the reticuloendothelial system (e.g. the liver). 
The overwhelming majority of metals in the lung can 
be localized to macrophages [9]. Stains reflect this 
localization of metals in the respiratory tract to macro-
phages [10]. The macrophage, with its accumulated 
metals, can be removed from the lung via mucociliary 
clearance and lymphatics.

Metal homeostasis in the lung is a dynamic rather 
than a static process. Following exposure of the 
respiratory tract, metals are removed and some por-
tion can be translocated outside of the lungs, reaching 
other tissues of the body [11]. This movement of 
metals from the respiratory tract into the systemic cir-
culation with distribution to numerous different tis-
sues is observed with particle-associated metals [12]. 
Such translocation from the respiratory tract can 
occur rapidly (e.g. over hours). Those metals with 
higher water solubility are more quickly transported 
systemically relative to those in an insoluble state. 
Clearance from the respiratory tract may also correlate 
with the availability in the lung of reductants and che-
lators which function to solubilize metals. Measure-

ments of metals in samples of the lung will reflect the 
efficiency of the clearance of the metals and their sys-
temic translocation. Accordingly, metal concentra-
tions in the respiratory tract will be dependent on the 
duration of time since the initial exposure.

3. Collection of EBC

The American Thoracic Society and European 
Respiratory Society have provided guidelines for the 
collection of EBC [13]. Such collection necessitates 
that a subject breathe through a one-way valve into a 
tube cooled to condense exhaled water vapor. A 
collecting period of 10 min or more provides a volume 
of condensate suitable for metals analysis (2–3 ml). 
The device can be integrated with a 
pneumotachograph allowing a definition for the 
completion of collection as the total expired volume



demonstrates better linearity of range and in-run
precision [20]. The drawbacks of ICPMS include the
fact that the volume of the sample required is much
larger, the costs (operating and capital costs) are
greater, and the training of the individual performing
the assay must be exceptional. While the choice
between GFAAS and ICPMS will frequently be deter-
mined by laboratory size, specialization, and
resources, ICPMS must be considered the method of
choice formulti-element screening in EBC.

Ultrapure water must be obtained and used for the
dilution of the stock solutions and to prepare the
blanks. Multi-element solutions can be purchased for
external standards. An internal standard (e.g. yttrium)
is recommended. Results can be reported asmetals per
volume condensate (i.e. microgram per ml and parts
per billion (ppb)) rather than metals per expired
volume as the latter is difficult to interpret and will
reflect the variability of both the metal measurements
and the spirometer. Both instrument detection limits
andmethod detection limits should be calculated.

Metals in EBC should not be measured prior to
acidification/digestion; the acid employed (HCl or
HNO3) should be very low in metals (e.g. Optima
grade, Fisher Scientific). A direct assay of EBC for
metals without prior homogenization/digestion will
not provide an accurate analysis [21].

A significant increase in metal concentrations in
samples was reported after their storage for several
weeks [17]. This was presumed to be the result of
leaching from the storage containers. Accordingly, it is
currently recommended that the samples be analyzed
as soon as possible.

Metal analysis of EBC can result in levels which are
below the method detection limit in the majority of
the samples [17]. Investigations have reported alumi-
num, cadmium, chromium, and tungsten levels to be
below the limits of detection in themajority of samples
[16, 22–25]. Subsequently, group effects can fre-
quently indicate the number of samples with detect-
able concentrations [25]. Such findings must be
interpretedwith some caution.

Finally, as a result of a lack of standardized metho-
dology for sampling and normalization for dilution
and low absolute levels, some studies express results as
concentrations of metallic elements relative to each
other rather than as absolute concentrations. While
this approach is not ideal, it can provide mechanistic
insights into the pathophysiology underlying indivi-
dual diseases.

5.Metals in EBC in normal populations

The epithelial lining fluid of the respiratory tract (i.e.
the alveolar and airway lining fluids) is most com-
monly sampled using BAL and EBC. Regarding
dilutions, it is estimated that approximately 1.0 +/−
0.1 ml of epithelial lining fluid was recovered per
100 ml BAL fluid [26]. In view of this, BAL fluid is
considered an approximately 1/100 dilution of the
epithelial lining fluid. The EBC is a more dilute
sampling of the epithelial lining fluid [27]. Based on
(1) the dilution of the BAL fluid approximating 1:100
and (2) the total protein concentration in BAL fluid
and EBC approximating 100 and 1 μg ml−1 respec-
tively, an estimate of the dilution of epithelial lining
fluid that EBC exhibits would be 1: 10 000 [28, 29].
Similar dilution estimates have been calculated using
urea or electrolytes (sodium and postassium) as
dilution markers [30, 31]. This dilution of EBC
appears to be extremely variable both among indivi-
duals and within an individual over time [30–32]. This
may correspond to changes in ventilation and con-
densation temperature as the main determinants of
evaporation and efficiency of collection respectively
[33], or to individual differences in the abilty to
generate aerosols of airway lining fluid [34].

Metals which have been quantified in BAL fluid
collected from healthy subjects are few (table 1)
[35–44]. Iron, zinc, copper, and chromium are the
metals measured most frequently in BAL fluid from
healthy subjects. The range of metal concentrations in
these individuals is wide, indicating the different

Table 1.Concentrations ofmetal in lavage collected fromhealthy subjects.

Study n Subjects Smoking Fe Zn Cu Cr Mn Ni Pb Ti

status

Sabbioni et al 1987 4–22 Not provided Not provided 508 510 215 10 2.7 145 34.6 <1

Romeo et al 1992 25 Patients N 106 0.6 1.5 3.2

Corhay et al 1995 45 Healthy N and S 170 300 50 20 10 140

Nelson et al 1996 21 Healthy N and S 2–9

Harlyk et al 1997 157 Patients Not provided 0–120 10–230 0–15

Stites et al 1999 8 Healthy N 0

8 Healthy S 100

Ghio et al 1998 22 Healthy N 40–70

Ghio et al 2003 28 Healthy N ≈50

Bargagli et al 2008 9 Healthy N and S 32 8 3 5 10 3 10

Ghio et al 2013 20 Healthy N <50

N is non-smoker and S is smoker.Metal concentrations are provided in ppb (μg L−1).



methodologies employed in performing both the pro-
cedure and the analysis. In addition, dissimilar popu-
lations of healthy subjects were used and could include
non-smokers, smokers, and even patients. Despite the
widely disparate approaches, it is accepted that iron
and zinc are those metals in greatest concentrations in
BAL fluid, with copper being less. It is uncertain that
other metals are at quantifiable levels in BAL fluid col-
lected from healthy subjects. This does not negate a
significant role for other metals in the human lung of
both healthy and diseased individuals, but defining
metal participation in a biological effect may be pro-
blematic.Whilemetals accumulate with age in numer-
ous tissues, including the lung, an increase in BAL
fluid metals among older, healthy subjects has not
been shown [45, 46]. Smoking does increase levels of
some metals in BAL fluids [41, 43]. A comparison of
metal concentrations in BAL fluid with those in blood
supports the possibility of blood being a source of iron,
zinc, and copper in the epithelial lining fluid [47–50].
However, all other metals in BAL fluid are reported at
approximately comparable levels as in blood, and it is
proposed that environmental sources (e.g. air pollu-
tion particles, environmental tobacco smoke, and
smoking)may impact these concentrations more than
those in the vascular compartment.

EBC has numerous advantages over BAL fluid as a
sampling of epithelial lining fluid in that its collection
(1) does not demand a difficult preparation, (2) is non-
invasive, (3) requires a short duration of time, (4) can
be repeated multiple times, and (5) can be based out-
side of a medical clinic or hospital [27, 51]. Accord-
ingly, metals have also been measured in EBC
collected from healthy subjects (table 2) [14, 17,
52–58]. Comparable to BAL fluid, iron and zinc are
those metals in highest concentration and are measur-
able in all EBC samples. However, other metals in the
EBC samples aremuch lower in concentration and the
majority of the samples are below the level of detection
[17, 55]. Gender, age, and smoking can impact EBC
metal concentrations [16, 17, 23, 25, 53, 59]. Differ-
ences between genders as well as aging can reflect the
volume of collected condensate which is proportional
to the ventilatory volume (pulmonary function in

healthy non-smokers is determined by gender, age,
and height/weight). Tobacco smoke includes metals,
and smoking can be predicted to introduce some
quantity of metals into the respiratory tract [60]. Lung
tissue from smokers demonstrated elevated con-
centrations of iron [46]. Current healthy smokers can
have higher EBC concentrations of lead and cadmium
relative to healthy non-smokers [51]. In smokers, iron
concentrations in EBC were significantly increased
when compared to healthy controls [61]. Cadmium,
lead, and aluminum levels in EBC were higher among
smokers and smokers with chronic obstructive pul-
monary disease (COPD) [62]. When patients with
COPD were subdivided into smokers versus ex-smo-
kers and non-smokers, the smokers exhibited higher
EBC lead, cadmium, and aluminum levels [53]. Ex-
smokers with COPD who had quit smoking for more
than two years continued to demonstrate elevations in
EBC metals relative to non-smokers [51]. Interest-
ingly, reduced concentrations of iron and nickel can
also be observed in the EBC of smokers [16, 53].
Finally, an investigation has demonstrated that expo-
sure to cigarette smoke does not always impact metal
concentrations in EBC [16].

6.Metals in EBC in diseased populations

The physiologic consequences of lung disease itself can
potentially impact metal concentrations in EBC.
Following the evaporation of water from the epithelial
surfaces of the respiratory tract, the dispersal of non-
volatile molecules into the water vapor can be
dependent on air flow. In diseased individuals, flow
can be significantly diminished. Accordingly, the
quantification of metal concentrations in EBC col-
lected from diseased cohorts may have an additional
limitation.

Metals in EBC samples have been measured in
patients diagnosed with asthma, COPD, and inter-
stitial lung disease. Among 50 healthy subjects and 30
asthmatics, the measurement of metal concentrations
supported lower iron levels in the group of asthmatics
[53]. There were no differences in the concentrations

Table 2.Concentrations ofmetal in EBC collected fromhealthy subjects.

Study n Subjects Smoking Fe Zn Cu Cr Mn Ni Pb Ti

status

Caglieri et al 2006 25 Healthy N and EX 0.28

Mutti et al 2006 50 Not provided N and EX ≈10 ≈1.25 ≈0.1 <1 <0.10

Goldoni et al 2008 20 Healthy N 0.18

Corradi et al 2009 33 Healthy N 1.20 1.60 0.60 ND 0.10 0.02 0.02

Vlasic et al 2009 22 Healthy N 22

Fox et al 2013 8 Not provided Not provided 0.25 0.57 0.87

Hulo et al 2014 16 Not provided N and S 0.50 0.32 0.24

Pelclova et al 2015 20 Not provided N, S, and EX ND

Leese et al 2017 22 Not provided Not provided 0.01–0.09

Metal concentrations are provided in ppb (μg L−1). N is non-smoker, S is smoker, and EX is ex-smoker. ND is not detectable.



7.Metals in EBC in occupational and
environmental studies

The analysis of EBC endpoints has been described as
one of the most promising methods available for the
study of pulmonary biomarkers of exposure, effect,
and susceptibility in occupational settings [59]. Metals
in EBC have been measured as biomarkers to evaluate
occupational exposure, including those among
welders and workers in the hard metal, chrome
plating, lead processing, and aluminum production
industries.

Samples of EBC from 45 welders showed elevated
levels of aluminum, nickel, and chromium relative to
24 non-exposed control subjects [66]. EBC fromweld-
ers revealed high iron and nickel concentrations [23].
Concentrations of manganese and nickel in EBC were
significantly higher among 17 welders compared to 16
unexposed control subjects after five days’ exposure
[14]. Welders showed significantly higher concentra-
tions of iron and nickel in EBC relative to non-
exposed volunteers [67]. Dissimilar working condi-
tions between different companies impacted eleva-
tions in iron and nickel concentrations in the EBC
collected from36welders [16].

A second occupation with metal exposure which
has been investigated employing EBC endpoints is the
hard metal industry. Thirty-three workers in work-
shops producing either diamond tools or hard-metal
mechanical parts showed detectable cobalt levels in
EBCwhile tungstenwas undetectable [22]. In contrast,
EBC concentrations of cobalt and tungsten were
reported to be measurable but not significantly ele-
vated among 62 workers at a hard metal processing
plant [68].

Metal concentrations in EBC have been utilized as
endpoints in studies of several other industries,
including chrome plating, lead processing, and alumi-
num production. EBC from groups of 10 and 24
chrome platers supported measurable chromium
levels [52, 69]. Chromium levelsmeasured in EBC cor-
related with those measured in the red blood cells
among 14 non-smoking, male chrome-platers [70].
EBC samples collected from a cohort of 58 workers
occupationally exposed to chromium compounds and
22 unexposed volunteers showed significantly higher
levels of chromium in the former [58]. In a group of
workers from two lead processing plants, lead con-
centrations in EBC reflected the levels of the metal in
the work environment settings [71]. Among workers
in an aluminum production plant, EBC concentra-
tions of beryllium and aluminum were higher in pot
roomworkers when comparedwith the controls [24].

Metal concentrations have also been quantified in
EBC collected from workers (1) exposed to titanium
dioxide (TiO2) and (2) at an airport. EBC collected
from 20 workers exposed to TiO2 demonstrated
higher concentrations of titanium relative to 20 con-
trols in which levels were below detectable limits [57].

of lead, aluminum, cadmium, copper, and manga-
nese. Comparable results were observed in EBC col-
lected from 22 healthy children and 17 asthmatics, 
with the latter having a statistically significantly lower 
iron concentration [56]. Another study with a small 
number of participants observed no significant differ-
ences in EBC iron concentration between asthmatics 
(n=10) and non-asthmatics (n = 16) [63]. Using a 
‘bleomycin technique for measurement of pro-oxi-
dant iron’, there was an increase in EBC iron levels 
post-exposure to city environments among severe 
asthmatics [61]. These studies do not clearly define a 
participation of metals in the pathogenesis of asthma 
but do suggest that further investigation into the role 
of iron in the induction of asthma is warranted.

EBC obtained from patients with stable COPD 
(n=50) revealed higher concentrations of lead, cad-
mium, and aluminum, and lower levels of iron and 
copper relative to samples collected from healthy sub-
jects (n=50) and healthy smokers (n=30) [53]. No  
correlations were observed between indices of pul-
monary function and EBC metal concentrations. 
When the COPD patients were classified on the basis 
of disease severity, associations between the differ-
ences in EBC metals were not demonstrated. 
Decreased EBC iron levels in COPD patients, relative 
to smokers with no obstruction, were attributed to a 
failure of the diseased lung to excrete iron [64]. EBC 
collected in 28 COPD patients presenting mild to 
moderate exacerbation revealed increased manganese 
concentrations relative to samples at recovery [65]. 
Based on this investigation, it is uncertain if metals 
participate in the etiology or contribute to the exacer-
bation of COPD. Further studies regarding an associa-
tion between metals and COPD are needed, 
particularly with a focus on iron and copper.

Levels of metals were quantified in EBC from 
patients with interstitial lung diseases [55]. Among 
patients with sarcoid (n = 22), non-specific inter-
stitial pneumonia (n=15), and idiopathic pulmon-

ary fibrosis (n = 19), concentrations of chromium 
and nickel could be increased relative to levels 
observed among healthy subjects (n=33). Elevated 
EBC concentrations of chromium and nickel among 
the interstitial lung patients disagreed with observa-
tions in the COPD patients, implying that the two 
groups were different, despite smoking being a major 
risk factor for both. In contrast, both EBC iron and 
copper were decreased in the groups with interstitial 
lung disease. The observed decrements in the metal 
concentrations in EBC could reflect a reaction com-
parable to the hypoferremic response observed in 
serum with inflammation.



EBC collected from healthy normal populations can
be compiled. Regardless of the current limitations of
the methodological approaches, metals have been
repeatedly demonstrated to potentially impact numer-
ous different lung diseases and injuries. The procure-
ment of EBC from both healthy subjects and diseased
individuals with subsequent measurement of metals is
strongly advocated in research efforts. Reports of
patient cohorts with such a quantification will
undoubtedly contribute to defining the basis for var-
ious lung diseases and injuries.

9.Disclaimer

This report has been reviewed by the National Health
and Environmental Effects Research Laboratory, Uni-
ted States Environmental Protection Agency, and
approved for publication. Approval does not signify
that the contents necessarily reflect the views and
policies of the Agency, nor does the mention of trade
names or commercial products constitute endorse-
ment or recommendations for use.
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Cadmium concentrations in EBC provided by those 
working in the airport apron area were higher relative 
to office workers [25].

These studies of occupationally exposed workers 
confirm significant exposure to specific metals. The 
cohorts used are small, reflect uncommon conditions 
or exposures, and document data that may not be 
applicable to larger groups. To document an occupa-
tional exposure, it may be more efficient to measure 
filters collected for environmental monitoring rather 
than to quantify EBC metal concentrations. In addi-
tion, the lung is not a passive filter but actively metabo-
lizes and transports metals. The EBC metal 
concentrations should not automatically be inter-
preted to support participation, or lack of participa-
tion, in an observed biological effect.

The measurement of metals in samples, including 
EBC, from occupationally and environmentally 
exposed individuals, supports some metal import by 
the lung with systemic translocation, including blood 
and urine [70]. This movement of metal from the lung 
to systemic sites is comparable to that described fol-
lowing metal exposure in humans and other animals 
[11, 72]. The amount of metal transported appears 
dependent on (1) the magnitude of the exposure and
(2) time with some elevations in the blood persisting 
for days.

8. Conclusion and recommendations

The results of the investigation demonstrate that 
transition and post-transition metals can be detectable 
in EBC. Currently, the measurement of metal concen-
trations in EBC is a research tool in the investigation of 
the participation of metals in the pathogenesis of 
disease and injury following exposure. Measurements 
of EBC metals may be especially valuable in research to 
define associations between human disease and smok-
ing. However, the considerable dilution of the EBC 
sample currently limits which metals can be accurately 
quantified; those which are normally measurable 
currently include iron, zinc, and copper. Individuals 
with a specific history of occupational and environ-
mental exposure to metal-abundant particles are the 
exception, with additional metals being measurable. 
Furthermore, the failure to measure and address the 
variability in the dilution of airway aerosols in EBC 
poses limitations to analysis. The measurement of 
EBC metal concentrations is also a potentially effective 
research technique in delineating the translocation of 
metals from the lung.

The quantification of EBC metal concentrations is 
currently not reliable for clinical use in either support-
ing or determining any diagnosis. Issues that must be 
addressed prior to the increased use of EBC metal 
measurements include the establishment of both stan-
dardized collection and measurement techniques. 
After this is achieved, reference values for metals in
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