72 research outputs found
Traveling liquid bridges in unsaturated fractured porous media
Interplay between capillary, gravity and viscous forces in unsaturated fractures gives rise to a range of complex flow phenomena. Evidence of highly intermittent fluxes, preferential and sustainable flow pathways lead to potentially significant flow focusing of concern for regulatory and management of water resources in fractured rock formations. In previous work[Ghezzehei TA,Or D.: Water Resour. Res. In Review(2005)] we developed mechanistic models for formation, growth and detachment of liquid bridges in geometrical irregularities within fractures. Such discrete and intermittent flows present a challenge to standard continuum theories. Our focus here is on predicting travel velocities of detached liquid elements and their interactions with fracture walls. The scaling relationships proposed by Podgorski et al. [Podgorski, T., et al.: Phys. Rev. Lett. 8703(3), 6102-NIL_95 (2001)] provide a general framework for processes affecting travel velocities of discrete liquid elements in fractures, tubes, and in coarse porous media. Comparison of travel velocity and distance by discrete bridges relative to equivalent continuous film flow reveal significantly faster and considerably larger distances traversed by liquid bridges relative to liquid films. Coalescence and interactions between liquid bridges result in complex patterns of travel times and distances. Mass loss on rough fracture surfaces shortens travel distances of an element; however, results show that such retardation provides new opportunities for coalescence of subsequent liquid elements traveling along the same path, resulting in mass accumulation and formation of larger liquid elements traveling larger distances relative to smooth fracture surfaces. Such flow focusing processes may be amplified considering a population of liquid bridges within a fracture plane and mass accumulation in fracture intersections
Recommended from our members
Testing the Concept of Drift Shadow at Yucca Mountain, Nevada
If proven, the concept of drift shadow, a zone of reduced water content and slower ground-water travel time beneath openings in fractured rock of the unsaturated zone, may increase performance of a proposed geologic repository for high-level radioactive waste at Yucca Mountain. To test this concept under natural-flow conditions present in the proposed repository horizon, isotopes within the uranium-series decay chain (uranium-238, uranium-234, and thorium-230, or {sup 238}U-{sup 234}U-{sup 230}Th) have been analyzed in samples of rock from beneath four naturally occurring lithophysal cavities. All samples show {sup 234}U depletion relative to parent {sup 238}U, indicating varying degrees of water-rock interaction over the past million years. Variations in {sup 234}U/{sup 238}U activity ratios indicate that depletion of {sup 234}U relative to {sup 238}U can be either smaller or greater in rock beneath cavity floors relative to rock near cavity margins. These results are consistent with the concept of drift shadow and with numerical simulations of meter-scale spherical cavities in fractured tuff. Differences in distribution patterns of {sup 234}U/{sup 238}U activity ratios in rock beneath the cavity floors are interpreted to reflect differences in the amount of past seepage into lithophysal cavities, as indicated by the abundance of secondary mineral deposits present on the cavity floors
Recommended from our members
Infiltration and Seepage Through Fractured Welded Tuff
The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit
On the role of soil water retention characteristic on aerobic microbial respiration
Soil water status is one of the
most important environmental factors that control microbial activity and rate of soil
organic matter (SOM) decomposition. Its effect can be partitioned into effect of water
energy status (water potential) on cellular activity, effect of water volume on cellular
motility, and aqueous diffusion of substrate and nutrients, as well as the effect of air
content and gas-diffusion pathways on concentration of dissolved oxygen. However,
moisture functions widely used in SOM decomposition models are often based on empirical
functions rather than robust physical foundations that account for these disparate
impacts of soil water. The contributions of soil water content and water potential vary
from soil to soil according to the soil water characteristic (SWC), which in turn is
strongly dependent on soil texture and structure. The overall goal of this study is to
introduce a physically based modeling framework of aerobic microbial respiration that
incorporates the role of SWC under arbitrary soil moisture status. The model was tested
by comparing it with published datasets of SOM decomposition under laboratory conditions.</p
Recommended from our members
Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico
The Nopal I site in the Pena Blanca uranium district has a number of geologic and hydrologic similarities to the proposed high-level radioactive waste repository at Yucca Mountain, making it a useful analogue to evaluate process models for radionuclide transport. The PB-1 well was drilled in 2003 at the Nopal I uranium deposit as part of a DOE-sponsored natural analogue study to constrain processes affecting radionuclide transport. The well penetrates through the Tertiary volcanic section down to Cretaceous limestone and intersects the regional aquifer system. The well, drilled along the margin of the Nopal I ore body, was continuously cored to a depth of 250 m, thus providing an opportunity to document the local stratigraphy. Detailed observations of these units were afforded through petrographic description and rock-property measurements of the core, together with geophysical logs of the well. The uppermost unit encountered in the PB-1 well is the Nopal Formation, a densely welded, crystal-rich, rhyolitic ash-flow tuff. This cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, goethite, jarosite, and opal. A zone of intense clay alteration encountered in the depth interval 17.45-22.30 m was interpreted to represent the basal vitrophyre of this unit. Underlying the Nopal Formation is the Coloradas Formation, which consists of a welded lithic-rich rhyolitic ash-flow tuff. The cored section of this unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 136.38 m. The Pozos Formation consists of poorly sorted conglomerate containing clasts of subangular to subrounded fragments of volcanic rocks, limestone, and chert. Three thin (2-6 m) intervals of intercalated pumiceous tuffs were observed within this unit. The contact between the Pozos Formation and the underlying Cretaceous limestone basement was observed at a depth of 244.40 m. The water table is located at a depth of {approx}223 m. Several zones with elevated radioactivity in the PB-1 core are located above the current water table. These zones may be associated with changes in redox conditions that could have resulted in the precipitation of uraninite from downward flowing waters transporting U from the overlying Nopal deposit. All of the intersected units have low (typically submillidarcy) matrix permeability, thus fluid flow in this area is dominated by fracture flow. These stratigraphic and rock-property observations can be used to constrain flow and transport models for the Pena Blanca natural analogue
Development and analysis of the Soil Water Infiltration Global database.
In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and the USA. In addition to its extensive geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use was gathered along with the infiltration data, making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (~76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on land use is available for 76% of the experimental sites with agricultural land use as the dominant type (~40%). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for public domain use only and can be copied freely by referencing it. Supplementary data are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the SWIG database by uploading new data to it
EMSL Pore Scale Modeling Challenge/Workshop
Report covers the background for the workshop, objectives, important research directions, necessary capabilities and overall recommendations
Agroforesterie et services écosystémiques en zone tropicale
Respectueux de lâenvironnement et garantissant une sĂ©curitĂ© alimentaire soutenue par la diversification des productions et des revenus quâils procurent, les systĂšmes agroforestiers apparaissent comme un modĂšle prometteur dâagriculture durable dans les pays du Sud les plus vulnĂ©rables aux changements globaux. Cependant, ces systĂšmes agroforestiers ne peuvent ĂȘtre optimisĂ©s quâĂ condition de mieux comprendre et de mieux maĂźtriser les facteurs de leurs productions. Lâouvrage prĂ©sente un ensemble de connaissances rĂ©centes sur les mĂ©canismes biophysiques et socio-Ă©conomiques qui sous-tendent le fonctionnement et la dynamique des systĂšmes agroforestiers. Il concerne, dâune part les systĂšmes agroforestiers Ă base de cultures pĂ©rennes, telles que cacaoyers et cafĂ©iers, de rĂ©gions tropicales humides en AmĂ©rique du Sud, en Afrique de lâEst et du Centre, dâautre part les parcs arborĂ©s et arbustifs Ă base de cultures vivriĂšres, principalement de cĂ©rĂ©ales, de la rĂ©gion semi-aride subsaharienne dâAfrique de lâOuest. Il synthĂ©tise les derniĂšres avancĂ©es acquises grĂące Ă plusieurs projets associant le Cirad, lâIRD et leurs partenaires du Sud qui ont Ă©tĂ© conduits entre 2012 et 2016 dans ces rĂ©gions. Lâensemble de ces projets sâarticulent autour des dynamiques des systĂšmes agroforestiers et des compromis entre les services de production et les autres services socio-Ă©cosystĂ©miques que ces systĂšmes fournissent
- âŠ