16 research outputs found

    Proposal for an integrated method of natural background levels assessment in groundwater

    Get PDF
    Natural Background Level (NBL), geochemical approach, statistical methods

    Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy

    Get PDF
    Abstract In a volcanic-sedimentary aquifer in central Italy, we investigate the co-existence of arsenic and fluoride in groundwater, aiming at identifying the most probable processes deductible at regional/groundwater body scale leading to the observed co-contamination in groundwater. Further, the areas at risk for human health where high concentrations can produce a significant risk to human health have been investigated. The study area is located in Latium (Central Italy) where silica-undersaturated alkali-potassic formations of Plio-Pleistocene age largely outcrop above marine and continental sand and clay deposits (Neogene) and continental alluvial deposits (Lower Pleistocene–Middle Pleistocene). Geochemical data from groundwater at 322 wells and 76 springs have been analyzed through statistical methods including clustering/PCA and geostatistical analysis. The results show exceedances of the drinking water standards for F (1.5 mg/L) and As (10.0 μg/L) in 29% and 55% of the sampled groundwater, respectively. Multivariate statistics suggest a widespread process of water-rock interaction with the K-alkaline volcanic formations releasing As, F, K, Si, V, Rb and PO4 to the groundwater. As and F show a good correlation (Pearson's r = 0.61, Spearman's rs = 0.59) and define a separate PCA component, confirming that their background in groundwater might be governed by a common process. Kriging interpolations have been used to study the spatial distribution of the two parameters, identifying areas with the highest concentrations and highest probability of exceeding the standards for human consumption. Moreover, by resampling the As-F data with the jackknife technique it was possible to identify the variations of their correlation index in the study area, due to specific As or F anomalies. While in the peripheral areas of the volcanic districts, dominated by sedimentary deposits, the As-F correlation index does not present important fluctuations, Indicator Kriging shows specific As or F correlation anomalies within the volcanic groundwater bodies and along the Tyrrhenian coastline. These anomalies seem to correspond to the zones with the highest thermal flux and/or are located near important structural lineaments. Fluoride correlation anomalies close to mining sites (fluorite) have also been observed. We hypothesize that, unlike the regional co-contamination, these local anomalies are related to the upwelling of geothermal fluids along fracture/fault systems that mix with cold groundwater, or to the interaction with mineral deposits particularly enriched of these elements

    Physiological Profiling and Functional Diversity of Groundwater Microbial Communities in a Municipal Solid Waste Landfill Area

    Get PDF
    The disposal of municipal solid wastes in landfills represents a major threat for aquifer environments at the global scale. The aim of this study was to explore how groundwater geochemical characteristics can influence the microbial community functioning and the potential degradation patterns of selected organic substrates in response to different levels of landfill-induced alterations. Groundwaters collected from a landfill area were monitored by assessing major physical-chemical parameters and the microbiological contamination levels (total coliforms and fecal indicators—Colilert-18). The aquatic microbial community was further characterized by flow cytometry and Biolog EcoPlatesTM assay. Three groundwater conditions (i.e., pristine, mixed, and altered) were identified according to their distinct geochemical profiles. The altered groundwaters showed relatively higher values of organic matter concentration and total cell counts, along with the presence of fecal indicator bacteria, in comparison to samples from pristine and mixed conditions. The kinetic profiles of the Biolog substrate degradation showed that the microbial community thriving in altered conditions was relatively more efficient in metabolizing a larger number of organic substrates, including those with complex molecular structures. We concluded that the assessment of physiological profiling and functional diversity at the microbial community level could represent a supportive tool to understand the potential consequences of the organic contamination of impacted aquifers, thus complementing the current strategies for groundwater management

    A proposal for groundwater sampling guidelines: application to a case study in Southern Latium

    Get PDF
    Groundwater monitoring , body status,  best sampling techniques,  quaternary alluvial,  pyroclastic deposit

    Groundwater Autochthonous Microbial Communities as Tracers of Anthropogenic Pressure Impacts: Example from a Municipal Waste Treatment Plant (Latium, Italy)

    Get PDF
    The groundwater behavior at a municipal solid waste disposal dump, located in Central Italy, was studied using a multi-parameter monitoring over 1 year consisting of 4 seasonal samples. The hydrological and hydrogeological dynamics of water circulation, microbiological parameters (microbial abundance and cell viability of the autochthonous microbial community), dissolved organic carbon, and several contaminants were evaluated and related to the geological structures in both two and three dimensions and used for geostatistical analysis in order to obtain 3D maps. Close relationships between geological heterogeneity, water circulation, pollutant diffusion, dissolved organic carbon, and cell viability were revealed. The highest cell viability values were found with dissolved organic carbon (DOC) values ≤0.5 mg/L; above this value, DOC negatively affected the microbial community. The highest DOC values were detected in groundwater at some sampling points within the site indicating its probable origin from the waste disposal dump. Although legislation limits for the parameters measured were not exceeded (except for a contaminant in one piezometer), the 1-year multi-parameter monitoring approach made it possible to depict both the dynamics and the complexity of the groundwater flux and, with "non-legislative parameters" such as microbial cell viability and DOC, identify the points with the highest vulnerability and their origin. This approach is useful for identifying the most vulnerable sites in a groundwater body

    Water-Rock Interaction Processes: A Local Scale Study on Arsenic Sources and Release Mechanisms from a Volcanic Rock Matrix

    No full text
    Arsenic is a potentially toxic element (PTE) that is widely present in groundwater, with concentrations often exceeding the WHO drinking water guideline value (10.0 μg/L), entailing a prominent risk to human health due to long-term exposure. We investigated its origin in groundwater in a study area located north of Rome (Italy) in a volcanic-sedimentary aquifer. Some possible mineralogical sources and main mechanisms governing As mobilization from a representative volcanic tuff have been investigated via laboratory experiments, such as selective sequential extraction and dissolution tests mimicking different release conditions. Arsenic in groundwater ranges from 0.2 to 50.6 μg/L. It does not exhibit a defined spatial distribution, and it shows positive correlations with other PTEs typical of a volcanic environment, such as F, U, and V. Various potential As-bearing phases, such as zeolites, iron oxyhydroxides, calcite, and pyrite are present in the tuff samples. Arsenic in the rocks shows concentrations in the range of 17–41 mg/kg and is mostly associated with a minor fraction of the rock constituted by FeOOH, in particular, low crystalline, containing up to 70% of total As. Secondary fractions include specifically adsorbed As, As-coprecipitated or bound to calcite and linked to sulfides. Results show that As in groundwater mainly originates from water-rock interaction processes. The release of As into groundwater most likely occurs through desorption phenomena in the presence of specific exchangers and, although locally, via the reductive dissolution of Fe oxy-hydroxides

    The Collection of Hyperspectral Measurements on Snow and Ice Covers in Polar Regions (SISpec 2.0)

    No full text
    The data value of hyperspectral measurements on ice and snow cover is strongly impacted by the availability of data services, where spectral libraries are integrated to detailed descriptions of the observed surface cover. For snow and ice cover, we present an updated version of the Snow/Ice Spectral Archive (SISpec 2.0), which has been integrated into a web portal characterized by different functionalities. The adopted metadata scheme features basic geographic data, information about the acquisition setup, and parameters describing the different surface types. While the implementation of the IACS Classification of Seasonal Snow on the Ground is the core component for snow cover, ice cover is approached using different parameters associated with its surface roughness and location. The web portal is not only a visualization tool, but also supports interoperability functionalities, providing data in the NetCDF file format. The availability of these functionalities sets the foundation for sharing a novel platform with the community and is an interesting tool for calibrating and validating data and models

    The Collection of Hyperspectral Measurements on Snow and Ice Covers in Polar Regions (SISpec 2.0)

    No full text
    The data value of hyperspectral measurements on ice and snow cover is strongly impacted by the availability of data services, where spectral libraries are integrated to detailed descriptions of the observed surface cover. For snow and ice cover, we present an updated version of the Snow/Ice Spectral Archive (SISpec 2.0), which has been integrated into a web portal characterized by different functionalities. The adopted metadata scheme features basic geographic data, information about the acquisition setup, and parameters describing the different surface types. While the implementation of the IACS Classification of Seasonal Snow on the Ground is the core component for snow cover, ice cover is approached using different parameters associated with its surface roughness and location. The web portal is not only a visualization tool, but also supports interoperability functionalities, providing data in the NetCDF file format. The availability of these functionalities sets the foundation for sharing a novel platform with the community and is an interesting tool for calibrating and validating data and models

    Physiological Profiling and Functional Diversity of Groundwater Microbial Communities in a Municipal Solid Waste Landfill Area

    No full text
    The disposal of municipal solid wastes in landfills represents a major threat for aquifer environments at the global scale. The aim of this study was to explore how groundwater geochemical characteristics can influence the microbial community functioning and the potential degradation patterns of selected organic substrates in response to different levels of landfill-induced alterations. Groundwaters collected from a landfill area were monitored by assessing major physical-chemical parameters and the microbiological contamination levels (total coliforms and fecal indicators—Colilert-18). The aquatic microbial community was further characterized by flow cytometry and Biolog EcoPlatesTM assay. Three groundwater conditions (i.e., pristine, mixed, and altered) were identified according to their distinct geochemical profiles. The altered groundwaters showed relatively higher values of organic matter concentration and total cell counts, along with the presence of fecal indicator bacteria, in comparison to samples from pristine and mixed conditions. The kinetic profiles of the Biolog substrate degradation showed that the microbial community thriving in altered conditions was relatively more efficient in metabolizing a larger number of organic substrates, including those with complex molecular structures. We concluded that the assessment of physiological profiling and functional diversity at the microbial community level could represent a supportive tool to understand the potential consequences of the organic contamination of impacted aquifers, thus complementing the current strategies for groundwater management

    Geochemistry, biota and natural background levels in an arsenic naturally contaminated volcanic aquifer

    No full text
    The tight links between chemical and ecological status are largely acknowledged as for surface water bodies, while aquifers are still considered as hidden groundwater reservoirs, rather than ecosystems to be preserved. Geochemical and biological interactions play a key role in all subterranean processes, including the dynamics of the fate of anthropogenic contaminants. Studies on groundwater dependent ecosystems (GDE) were mainly focused on karst aquifers so far, but an increased awareness on the importance of water-rock interactions and methodological improvements in microbial ecology are rapidly increasing the level of characterization of groundwater ecosystems in various hydrogeological contexts. Similarly, knowledge about groundwater biodiversity is still limited, especially if porous habitats are concerned. Yet, groundwater and GDEs are populated by a diverse and highly adapted biota, dominated by crustaceans, which provide important ecosystem services and act as biological indicators of chemical and quantitative impact on groundwater resources. In a previous research (Amalfitano et al. 2014), we reported that the microbial community heterogeneity may reflect the lithological and hydrogeological complexity within volcanic and alluvial facies transition in a groundwater body. The quantitative tracking of the microbial community structure allowed disentangling the natural biogeochemical processes evolving within the aquifer flow path. The analyses of groundwater crustaceans assemblages may contribute to shed more light upon the state and dynamics of such ecosystems. In the present research, a comprehensive study of a water table aquifer flowing through a quaternary volcanic district is being performed, including the geochemical (inorganic) composition, the microbial composition, and the analysis of crustacean assemblages. Groundwater samples are periodically collected from private wells and springs under a low anthropic impact. The key issues within the sampling area are related to occurrence of arsenic from natural sources, fluoride and coliforms, which make the water resource unsuitable for human consumption. The aim of this work is to present the first outcomes of this activit
    corecore