44 research outputs found
Nutrient addition increases grassland sensitivity to droughts
Grasslands worldwide are expected to experience an increase in extreme events such asdrought, along with simultaneous increases in mineral nutrient inputs as a result of human industrialactivities. These changes are likely to interact because elevated nutrient inputs may alter plantdiversity and increase the sensitivity to droughts. Dividing a system?s sensitivity to drought intoresistance to change during the drought and rate of recovery after the drought generates insights intodifferent dimensions of the system?s resilience in the face of drought. Here, we examine the effects ofexperimental nutrient fertilization and the resulting diversity loss on the resistance to and recoveryfrom severe regional droughts. We do this at 13 North American sites spanning gradients of aridity, 5annual grasslands in California and 8 perennial grasslands in the Great Plains. We measured rate ofresistance as the change in annual aboveground biomass (ANPP) per unit change in growing seasonprecipitation as conditions declined from normal to drought. We measured recovery as the change inANPP during the post drought period and the return to normal precipitation. Resistance and recoverydid not vary across the 400 mm range of mean growing season precipitation spanned by our sites inthe Great Plains. However, chronic nutrient fertilization in the Great Plains reduced drought resistanceand increased drought recovery. In the California annual grasslands, arid sites had a greater recoverypost-drought than mesic sites, and nutrient addition had no consistent effects on resistance orrecovery. Across all study sites, we found that pre-drought species richness in natural grasslands wasnot consistently associated with rates of resistance to or recovery from the drought, in contrast toearlier findings from experimentally assembled grassland communities. Taken together, these resultssuggest that human-induced eutrophication may destabilize grassland primary production, but theeffects of this may vary across regions and flora, especially between perennial and annual-dominatedgrasslands.Fil: Bharath, Siddharth. University of Minnesota; Estados UnidosFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Biederman, Lori A.. owa State University; Estados UnidosFil: Blumenthal, Dana M.. State University of Colorado - Fort Collins; Estados UnidosFil: Fay, Philip A.. United States Department of Agriculture; Estados UnidosFil: Gherardi, Laureano. Arizona State University; Estados UnidosFil: Knops, Johannes M. H.. United States Department of Agriculture; Estados UnidosFil: Leakey, Andrew D. B.. State University of Colorado - Fort Collins; Estados UnidosFil: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Seabloom, Eric. University of Minnesota; Estados Unido
Nutrient Availability Controls the Impact of Mammalian Herbivores on Soil Carbon and Nitrogen Pools in Grasslands
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change
Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands
Grasslands are subject to considerable alteration due to human activities globally,
including widespread changes in populations and composition of large mammalian
herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and
these changes likely interact with increases in soil nutrient availability. Given the scale
of grassland soil fluxes, such changes can have striking consequences for atmospheric
C concentrations and the climate. Here, we use the Nutrient Network experiment
to examine the responses of soil C and N pools to mammalian herbivore exclusion
across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized
with NPK + micronutrients). We show that the impact of herbivore exclusion on soil
C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are
smaller upon herbivore exclusion. The highest mean soil C and N pools were found in
grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in
combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion
was contingent on temperature – herbivores likely cause losses of C and N in colder
sites and increases in warmer sites. Additionally, grasslands that contain mammalian
herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the
importance of conserving mammalian herbivore populations in grasslands worldwide.
We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land–atmosphere
interactions under future climate change.National Science Foundation Research Coordination Network,
Long Term Ecological Research,
Institute on the Environment,
Strategic Resources of the Netherlands Institute of Ecology,
Research Foundation Flanders,
VENI grant,
NWO-RUBICON grant,
NWO-VENI grant,
German Centre for Integrative Biodiversity Research,
German Research Foundation (FZT 118).http://wileyonlinelibrary.com/journal/gcbpm2021Mammal Research InstituteZoology and Entomolog
Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide
Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non–nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.DATA AVAILABILITY : Plant, PAR, climate, and soil nitrogen data have been deposited in the Environmental Data Initiative (EDI) repository (https://portal.edirepository.org/nis/mapbrowse?packageid=edi.838.1) (83). Source data are provided with this paper.This work was generated using data from the Nutrient Network (https://nutnet.org/) experiment, funded at the site scale by individual researchers. Coordination and data management were supported by funding to E.T.B. and E.W.S. from the NSF Research Coordination Network (NSF-DEB-1042132) and Long-Term Ecological Research (NSF-DEB-1234162 to Cedar Creek Long-Term Ecological Research) programs, and the Institute on the Environment (DG-0001-13). We also thank the Minnesota Supercomputer Institute for hosting project data and the Institute of the Environment for hosting Network meetings. P.M.T. was supported by an Argentine Research Council fellowship (Consejo Nacional de Investigaciones Científicas y Técnicas) and the Australian Endeavour Programme.https://www.pnas.orghj2022Mammal Research InstituteZoology and Entomolog
Extreme drought impacts have been underestimated in grasslands and shrublands globally
Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought
Nitrogen limitation in arid-subhumid ecosystems: A meta-analysis of fertilization studies
Evidence supporting water limitation in arid-semiarid ecosystems includes strong correlations between aboveground net primary production (ANPP) and annual precipitation as well as results from experimental water additions. Similarly, there is evidence of N limitation on ANPP in low precipitation ecosystems, but is this a widespread phenomenon? Are all arid-semiarid ecosystems equally limited by nitrogen? Is the response of N fertilization modulated by water availability? We conducted a meta-analysis of ANPP responses to N fertilization across arid to subhumid ecosystems to quantify N limitation, using the effect-size index R which is the ratio of ANPP in fertilized to control plots. Nitrogen addition increased ANPP across all studies by an average of 50%, and nitrogen effects increased significantly (P = 0.03) along the 50-650 mm yr-1 precipitation gradient. The response ratio decreased with mean annual temperature in arid and semiarid ecosystems but was insensitive in subhumid systems. Sown pastures showed significant (P = 0.007) higher responses than natural ecosystems. Neither plant-life form nor chemical form of the applied fertilizer showed significant effects on the primary production response to N addition. Our results showed that nitrogen limitation is a widespread phenomenon in low-precipitation ecosystems and that its importance increases with annual precipitation from arid to subhumid regions. Both water and N availability limit primary production, probably at different times during the year; with frequency of N limitation increasing and frequency of water limitation decreasing as annual precipitation increases. Expected increase N deposition, which could be significant even in arid ecosystems, would increase aboveground net primary production in water-limited ecosystems that account for 40% of the terrestrial surface. © 2011 Elsevier Ltd.Fil: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Gherardi, Laureano. Arizona State University; Estados UnidosFil: Sala, Osvaldo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Arizona State University; Estados Unido
Preference for different inorganic-nitrogen forms among plant-functional types and species of the Patagonian steppe
We have explored species–specific preferences for nitrate (NO3 −) and ammonium (NH4 +) as an alternative niche separation in ecosystems where nitrogen (N) is present mostly in inorganic forms. The Patagonian steppe is dominated by shrubs and grasses. Shrubs absorb water and nutrients from deep soil layers, which are poor in N, while grasses have the opposite pattern, absorbing most of their water and nutrients from the upper layers of the soil. We hypothesized that the preferences of shrub and grass for inorganic N forms are different and that the rate of potential N uptake is greater in shrubs than in grasses. To test this hypothesis, we grew individuals of six dominant species in solutions of different NH4 +:NO3 − concentration ratios. Nitrate uptake was found to be higher in shrubs, while ammonium uptake was similar between plant functional types. The NH4 +:NO3 − uptake ratio was significantly lower for shrubs than grasses. Shrubs, which under field conditions have deeper rooting systems than grasses, showed a higher N absorption capacity than grasses and a preference for the more mobile N form, nitrate. Grasses, which had lower N uptake rates than shrubs, preferred ammonium over nitrate. These complementary patterns between grasses and shrubs suggest a more thorough exploitation of resources by diverse ecosystems than those dominated by just one functional type. The loss of one plant functional group or a significant change in its abundance would therefore represent a reduction in resource use efficiency and ecosystem functioning.Fil: Gherardi, Laureano. Arizona State University. School of Life Sciences; Estados UnidosFil: Sala, Osvaldo Esteban. Arizona State University. School of Life Sciences; Estados Unidos. Arizona State University. School of of Sustainability; Estados UnidosFil: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentin
Grasses have larger response than shrubs to increased nitrogen availability: A fertilization experiment in the Patagonian Steppe
Nitrogen limits plant growth in almost all terrestrial ecosystems, even in low-precipitation ecosystems. Vegetation in arid ecosystems is usually composed of two dominant plant-functional types, grasses and shrubs, which have different rooting and water acquisition patterns. These plant-functional types may respond differently to N availability because they have different strategies to absorb and retranslocate N. We hypothesized that grasses are more N limited than shrubs, and consequently will show higher responses to N addition. To test this hypothesis, we added 50 Kg N.Ha-1.year-1 as NH4NO3 during two years in the Patagonian steppe, Argentina, and we evaluated the responses of aboveground net primary production and N concentration of green leaves of the dominant grass and shrub species. Grass biomass significantly (P=0.007) increased with increased N availability whereas shrub biomass did not change after two years of N addition. Shrubs have higher nitrogen concentration in green leaves than grasses, particularly the leguminous Adesmia volkmani, and showed no response to N addition whereas foliar N concentration of grasses significantly increased with N fertilization (P<0.05). Grasses may have a larger response to increase N availability than shrubs because they have a more open N economy absorbing up to 30% of their annual requirement from the soil. In contrast, shrubs have a closer N cycle, absorbing between 7 to 16% of their annual N requirement from the soil. Consequently shrubs depend less on soil N availability and are less responsive to increases in soil N.Fil: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Gherardi, Laureano. Arizona State University; Estados UnidosFil: Sala, Osvaldo Esteban. Arizona State University; Estados Unido