178 research outputs found

    Sustainable Engineering and Eco Design

    Get PDF

    Combustion and Emissions Characteristics of Biodiesel Fuels

    Get PDF

    Life Cycle Analysis of Wind Turbine

    Get PDF

    Health Misinformation in Search and Social Media

    Get PDF
    People increasingly rely on the Internet in order to search for and share health-related information. Indeed, searching for and sharing information about medical treatments are among the most frequent uses of online data. While this is a convenient and fast method to collect information, online sources may contain incorrect information that has the potential to cause harm, especially if people believe what they read without further research or professional medical advice. The goal of this thesis is to address the misinformation problem in two of the most commonly used online services: search engines and social media platforms. We examined how people use these platforms to search for and share health information. To achieve this, we designed controlled laboratory user studies and employed large-scale social media data analysis tools. The solutions proposed in this thesis can be used to build systems that better support people's health-related decisions. The techniques described in this thesis addressed online searching and social media sharing in the following manner. First, with respect to search engines, we aimed to determine the extent to which people can be influenced by search engine results when trying to learn about the efficacy of various medical treatments. We conducted a controlled laboratory study wherein we biased the search results towards either correct or incorrect information. We then asked participants to determine the efficacy of different medical treatments. Results showed that people were significantly influenced both positively and negatively by search results bias. More importantly, when the subjects were exposed to incorrect information, they made more incorrect decisions than when they had no interaction with the search results. Following from this work, we extended the study to gain insights into strategies people use during this decision-making process, via the think-aloud method. We found that, even with verbalization, people were strongly influenced by the search results bias. We also noted that people paid attention to what the majority states, authoritativeness, and content quality when evaluating online content. Understanding the effects of cognitive biases that can arise during online search is a complex undertaking because of the presence of unconscious biases (such as the search results ranking) that the think-aloud method fails to show. Moving to social media, we first proposed a solution to detect and track misinformation in social media. Using Zika as a case study, we developed a tool for tracking misinformation on Twitter. We collected 13 million tweets regarding the Zika outbreak and tracked rumors outlined by the World Health Organization and the Snopes fact-checking website. We incorporated health professionals, crowdsourcing, and machine learning to capture health-related rumors as well as clarification communications. In this way, we illustrated insights that the proposed tools provide into potentially harmful information on social media, allowing public health researchers and practitioners to respond with targeted and timely action. From identifying rumor-bearing tweets, we examined individuals on social media who are posting questionable health-related information, in particular those promoting cancer treatments that have been shown to be ineffective. Specifically, we studied 4,212 Twitter users who have posted about one of 139 ineffective ``treatments'' and compared them to a baseline of users generally interested in cancer. Considering features that capture user attributes, writing style, and sentiment, we built a classifier that is able to identify users prone to propagating such misinformation. This classifier achieved an accuracy of over 90%, providing a potential tool for public health officials to identify such individuals for preventive intervention

    Hybrid solar/wind/diesel water pumping system in Dubai, United Arab Emirates

    Get PDF
    This paper proposes a hybrid power system design for water pumping system in Dubai (Latitude 25.25 °N and Longitude 55 °E), United Arab Emirates using solar photovoltaic (PV) panels, wind turbines, and diesel generator. The proposed design considers the changes in weather conditions (humidity percentage, temperature in celsius, and wind speed in m/s) that directly affect solar irradiance values which alter the performance of the hybrid system. The proposed design deals with the problem of rare rainy days in Dubai between December and March and the high temperature throughout the year since that makes providing water to rural and isolated zones essential. The proposed system uses voltage regulator to maintain stable DC voltage from the solar power system, battery bank to store the voltage from solar PV panels, three-phase rectifier to convert the AC voltage from wind power system to DC, three-phase step-down transformers to reduce the AC voltage of the wind turbine and diesel generator, and DC electric motor for water pumping output. The system used neural network for solar irradiance forecasting over an interval of 10 years (from 2009 to 2019). The proposed system will be demonstrated using Simulink to show the stability and performance under different weather conditions

    Solar/wind pumping system with forecasting in Sharjah, United Arab Emirates

    Get PDF
    This paper demonstrates a water pumping hybrid power system design. The proposed system was designed for water related applications in Sharjah (Latitude 25.29 °N and Longitude 55 °E), United Arab Emirates. The proposed water hybrid system has two primary renewable power systems: solar PV panels and wind turbines. The proposed hybrid system considers the changes in weather conditions (humidity, wind speed, and temperature) since wind speed affects the performance of the wind turbines and solar panels are affected by solar irradiance. The following components are involved in the proposed design: battery (to store the power from solar panels), voltage regulator circuit (for getting stable DC voltage), three-phase rectifier (to convert the reduced AC voltage to DC), three-phase transformer (for reducing the obtained AC voltage), and DC electric motor (the main output of the proposed water pumping system). The proposed water pumping system relies on neural network blocks to achieve weather forecasting by obtaining solar irradiance values from the input temperature, wind speed, and humidity in a span of five years. Both MATLAB and Simulink are used simulate the performance of the proposed system under different weather conditions by changing the values according to the measured weather conditions values over five years
    corecore