402 research outputs found

    ELISA development for vitellin of <i>Neomysis integer</i>

    Get PDF

    General introduction

    Get PDF

    General conclusions and research perspectives

    Get PDF

    Nutrient recovery from digestates : techniques and end-products

    Get PDF
    In nitrate vulnerable zones application of animal manure to land is limited. Digestate from anaerobic digestion plants competes with manure for nutrient disposal on arable land, which forms a serious hinder for the biogas sector to develop in these regions. Hence, one of its biggest challenges is to find cost-effective and sustainable ways for digestate processing or disposal. Furthermore, primary phosphorus resources are becoming scarce and expensive and will be depleted within a certain time. This urges the need to recycle P from secondary sources, like digestate or manure. From a sustainability point of view, it seems therefore no more than logical that digestate processing techniques switched their focus to nutrient recovery rather than nutrient removal. This paper gives an overview of digestate processing techniques, with a special focus on nutrient recovery techniques. In this paper nutrient recovery techniques are delineated as techniques that (1) create an end-product with higher nutrient concentrations than the raw digestate or (2) separate the envisaged nutrients from organic compounds that are undesirable in the end-product, with the aim to produce an end-product that is fit for use in chemical or fertiliser industry or as a mineral fertiliser replacement. Various nutrient recovery techniques are described, with attention for some technical bottlenecks and the current state of development. Where possible, physicochemical characteristics of the endproducts are given
    corecore