9 research outputs found

    Effects of Silicon and AgNO3 Elicitors on Biochemical Traits and Antioxidant Enzymes Activity of Henbane (Hyoscyamus reticulatus L.) Hairy Roots

    Get PDF
    Lattice henbane (Hyoscyamus reticulatus L.) is an herbaceous, biennial plant belonging to Solanaceae family. H. reticulatus hairy roots were established from two-week-old leaves infected by A7 strain of Agrobacterium rhizogenes on solid Murashige and Skoog (MS) medium. In this study, abiotic elicitors including; Sodium silicate (Na2SiO3) with different concentrations (0, 1, 5 and 7 mM) and silver nitrate (AgNO3) concentrations (0, 0.5, 1 and 2 mM) were added to hairy roots culture media. The results showed that, Na2SiO3 and AgNO3 significantly affected hairy roots fresh weight after 24h. Also, the highest hairy root fresh weight was observed in the control, and with broadening elicitor concentrations, fresh weight was decreased in both treated hairy roots with AgNO3 and Na2SiO3 but the effect of exposure duration was not significant. Biochemical analysis showed that total antioxidant activity (TAA), total phenol (TP), catalase (CAT), ascorbate peroxidase (APX) and Guaiacolperoxidase (GPX) activities were enhanced in elicitated hairy roots compared to non elicitated hairy roots. The highest CAT, APX and GPX activities were observed in hairy roots treated with 7mM Na2SiO3 and 2mM AgNO3. Our results suggest that, Na2SiO3 and AgNO3 can stimulate the antioxidant defense systems and protect the plants from subsequent stresses

    The Clinical, Microbiological, and Immunological Effects of Probiotic Supplementation on Prevention and Treatment of Periodontal Diseases: A Systematic Review and Meta-Analysis

    No full text
    (1) Background: Periodontal diseases are a global health concern. They are multi-stage, progressive inflammatory diseases triggered by the inflammation of the gums in response to periodontopathogens and may lead to the destruction of tooth-supporting structures, tooth loss, and systemic health problems. This systematic review and meta-analysis evaluated the effects of probiotic supplementation on the prevention and treatment of periodontal disease based on the assessment of clinical, microbiological, and immunological outcomes. (2) Methods: This study was registered under PROSPERO (CRD42021249120). Six databases were searched: PubMed, MEDLINE, EMBASE, CINAHL, Web of Science, and Dentistry and Oral Science Source. The meta-analysis assessed the effects of probiotic supplementation on the prevention and treatment of periodontal diseases and reported them using Hedge’s g standardized mean difference (SMD). (3) Results: Of the 1883 articles initially identified, 64 randomized clinical trials were included in this study. The results of this meta-analysis indicated statistically significant improvements after probiotic supplementation in the majority of the clinical outcomes in periodontal disease patients, including the plaque index (SMD = 0.557, 95% CI: 0.228, 0.885), gingival index, SMD = 0.920, 95% CI: 0.426, 1.414), probing pocket depth (SMD = 0.578, 95% CI: 0.365, 0.790), clinical attachment level (SMD = 0.413, 95% CI: 0.262, 0.563), bleeding on probing (SMD = 0.841, 95% CI: 0.479, 1.20), gingival crevicular fluid volume (SMD = 0.568, 95% CI: 0.235, 0.902), reduction in the subgingival periodontopathogen count of P. gingivalis (SMD = 0.402, 95% CI: 0.120, 0.685), F. nucleatum (SMD = 0.392, 95% CI: 0.127, 0.658), and T. forsythia (SMD = 0.341, 95% CI: 0.050, 0.633), and immunological markers MMP-8 (SMD = 0.819, 95% CI: 0.417, 1.221) and IL-6 (SMD = 0.361, 95% CI: 0.079, 0.644). (4) Conclusions: The results of this study suggest that probiotic supplementation improves clinical parameters, and reduces the periodontopathogen load and pro-inflammatory markers in periodontal disease patients. However, we were unable to assess the preventive role of probiotic supplementation due to the paucity of studies. Further clinical studies are needed to determine the efficacy of probiotic supplementation in the prevention of periodontal diseases

    THE LINKS BETWEEN CIRCADIAN CLOCK DISRUPTION AND LIFESTYLE TRAITS IN RHEUMATOID ARTHRITIS

    No full text
    The abstract of this item is unavailable due to an embargo

    The Clinical, Microbiological, and Immunological Effects of Probiotic Supplementation on Prevention and Treatment of Periodontal Diseases: A Systematic Review and Meta-Analysis

    No full text
    (1) Background: Periodontal diseases are a global health concern. They are multi-stage, progressive inflammatory diseases triggered by the inflammation of the gums in response to periodontopathogens and may lead to the destruction of tooth-supporting structures, tooth loss, and systemic health problems. This systematic review and meta-analysis evaluated the effects of probiotic supplementation on the prevention and treatment of periodontal disease based on the assessment of clinical, microbiological, and immunological outcomes. (2) Methods: This study was registered under PROSPERO (CRD42021249120). Six databases were searched: PubMed, MEDLINE, EMBASE, CINAHL, Web of Science, and Dentistry and Oral Science Source. The meta-analysis assessed the effects of probiotic supplementation on the prevention and treatment of periodontal diseases and reported them using Hedge’s g standardized mean difference (SMD). (3) Results: Of the 1883 articles initially identified, 64 randomized clinical trials were included in this study. The results of this meta-analysis indicated statistically significant improvements after probiotic supplementation in the majority of the clinical outcomes in periodontal disease patients, including the plaque index (SMD = 0.557, 95% CI: 0.228, 0.885), gingival index, SMD = 0.920, 95% CI: 0.426, 1.414), probing pocket depth (SMD = 0.578, 95% CI: 0.365, 0.790), clinical attachment level (SMD = 0.413, 95% CI: 0.262, 0.563), bleeding on probing (SMD = 0.841, 95% CI: 0.479, 1.20), gingival crevicular fluid volume (SMD = 0.568, 95% CI: 0.235, 0.902), reduction in the subgingival periodontopathogen count of P. gingivalis (SMD = 0.402, 95% CI: 0.120, 0.685), F. nucleatum (SMD = 0.392, 95% CI: 0.127, 0.658), and T. forsythia (SMD = 0.341, 95% CI: 0.050, 0.633), and immunological markers MMP-8 (SMD = 0.819, 95% CI: 0.417, 1.221) and IL-6 (SMD = 0.361, 95% CI: 0.079, 0.644). (4) Conclusions: The results of this study suggest that probiotic supplementation improves clinical parameters, and reduces the periodontopathogen load and pro-inflammatory markers in periodontal disease patients. However, we were unable to assess the preventive role of probiotic supplementation due to the paucity of studies. Further clinical studies are needed to determine the efficacy of probiotic supplementation in the prevention of periodontal diseases

    The effects of low-level laser irradiation on breast tumor in mice and the expression of Let-7a, miR-155, miR-21, miR125, and miR376b

    No full text
    Low-level laser therapy (LLLT) is a form of photon therapy which can be a non-invasive therapeutic procedure in cancer therapy using low-intensity light in the range of 450–800 nm. One of the main functional features of laser therapy is the photobiostimulation effects of low-level lasers on various biological systems including altering DNA synthesis and modifying gene expression, and stopping cellular proliferation. This study investigated the effects of LLLT on mice mammary tumor and the expression of Let-7a, miR155, miR21, miR125, and miR376b in the plasma and tumor samples. Sixteen mice were equally divided into four groups including control, and blue, green, and red lasers at wavelengths of 405, 532, and 632 nm, respectively. Weber Medical Applied Laser irradiation was carried out with a low power of 1–3 mW and a series of 10 treatments at three times a week after tumor establishment. Tumor volume was weekly measured by a digital vernier caliper, and qRT-PCR assays were performed to accomplish the study. Depending on the number of groups and the p value of the Kolmogorov-Smirnov test of normality, a t test, a one-way ANOVA, or a non-parametric test was used for data analyses, and p < 0.05 was considered to be statistically significant. The average tumor volume was significantly less in the treated blue group than the control group on at days 21, 28, and 35 after cancerous cell injection. Our data also showed an increase of Let-7a and miR125a expression and a decrease of miR155, miR21, and miR376b expression after LLLT with the blue laser both the plasma and tumor samples compared to other groups. It seems that the non-invasive nature of laser bio-stimulation can make LLLT an attractive alternative therapeutic tool. © 2016 Springer-Verlag Londo
    corecore