22 research outputs found

    Porous pellets as drug delivery system

    Full text link
    Background: Multi particulate drug delivery systems, such as pellets, are frequently used as they offer therapeutic advantages over single-unit dosage forms. Aim: Development of porous pellets followed by evaluation of potential drug loading techniques. Method: Porous microcrystalline pellets were manufactured and evaluated as drug delivery system. Pellets consisting of Avicel PH 101 and NaCl (70%,w/w) were prepared by extrusion/spheronization. The NaCl fraction was extracted with water and after drying porous pellets were obtained (33.2% porosity). Immersion of the porous pellets in a 15% and 30% (w/v) metoprolol tartrate solution, ibuprofen impregnation via supercritical fluids and paracetamol layering via fluidized bed coating were evaluated as drug loading techniques. Results: Raman spectroscopy revealed that immersion of the pellets in a drug solution and supercritical fluid impregnation allowed the drug to penetrate into the porous structure of the pellets. The amount of drug incorporated depended on the solubility of the drug in the solvent (water or supercritical CO2). Drug release from the porous pellets was immediate and primarily controlled by pure diffusion. Conclusion: The technique described in this research work is suitable for the production of porous pellets. Drug loading via immersion the pellets in a drug solution and supercritical fluid impregnation resulted in a drug deposition in the entire pellet in contrast to fluid bed layering where drugs were only deposed on the pellet surface

    Extrusion/spheronization of pectin-based formulations. II. Effect of additive concentration in the granulation liquid

    No full text
    Purpose. The aim of this study was to improve the formation of spherical pectin pellets by investigating the effect of additive concentration in the granulation liquid on the shape and size of the products as well as by identifying an optimal additive concentration.Methods. High-methoxylated, low-methoxylated, and amidated low-methoxylated pectin types were evaluated in combination with different concentrations of methanol, ethanol, citric acid, lactic acid, and calcium chloride. Pellets were prepared in a power-consumption-controlled twin-screw extruder, then spheronized and dried. The moisture content of the extrudate was determined, and the final products were characterized by image analysis and sieving analysis. A cloud point test was employed for the identification of an optimal additive concentration.Results. The concentration of additive in the granulation liquid affected the moisture content of the extrudate and the shape, size, and mechanical stability of the pectin pellets. Improvements in the pellet characteristics are dependent on the pectin type employed. The 2 low-methoxylated pectins were more sensitive to concentration changes than was the high-methoxylated type. Above a certain threshold concentration, the quality of the pellets are improved. This additive concentration differs according to type of pectin and type of additive.Conclusion. It was demonstrated that there is a concentration-dependent interaction between pectin and substances added to the granulation liquid that can be utilized to improve the formation of spherical pectin pellets

    Development and Characterization of Enteric-Coated Immediate-Release Pellets of Aceclofenac by Extrusion/Spheronization Technique Using Îş-Carrageenan as a Pelletizing Agent

    No full text
    In the present study, an attempt was made to prepare immediate-release enteric-coated pellets of aceclofenac, a poorly soluble nonsteroidal anti-inflammatory drug that has a gastrointestinal intolerance as its serious side effect. Formulation of enteric-coated pellets with improved solubility of aceclofenac could address both of these problems. To achieve these goals, pellets were prepared by extrusion–spheronization method using pelletizing agents that can contribute to the faster disintegration and thereby improve the solubility of the drug. Different disintegrants like β-cyclodextrin, kollidon CL, Ac-Di-Sol, and sodium starch glycolate were tried in order to further improve disintegration time. The pellets were characterized for drug content, particle size distribution, flow properties, infrared spectroscopy, surface morphology, disintegration rate, and dissolution profile. The formulations, which showed best disintegration and dissolution profiles, were coated with Eudragit L100-55, an enteric-coated polymer which does not dissolve at gastric pH but dissolves at intestinal pH, releasing the drug immediately in the dissolution medium. The optimized enteric-coated formulation containing 20% κ-carrageenan, lactose, and sodium starch glycolate as a disintegrant did inhibit the release of the drug for 2 h in 0.1 N HCl, whereas 87% of the drug was released within 45 min. The improvement was substantial when it was compared with solubility of pure drug under the same conditions. Thus, dissolution profiles suggested that combination of κ-carrageenan and sodium starch glycolate resulted into fast-disintegrating, immediate-release pellets, overcoming the bioavailability problem of the poorly soluble drug, aceclofenac, and enteric coating of these pellets avoids the exposure of aceclofenac to ulcer-prone areas of the gastrointestinal tract

    Properties of pellets manufactured by wet extrusion/spheronization process using Îş-carrageenan: Effect of process parameters

    No full text
    The aim of this study was to systematically evaluate the pelletization process parameters of κ-carrageenan-containing formulations. The study dealt with the effect of 4 process parameters—screw speed, number of die holes, friction plate speed, and spheronizer temperature—on the pellet properties of shape, size, size distribution, tensile strength, and drug release. These parameters were varied systematically in a 24 full factorial design. In addition, 4 drugs—phenacetin, chloramphenicol, dimenhydrinate, and lidocaine hydrochloride—were investigated under constant process conditions. The most spherical pellets were achieved in a high yield by using a large number of die holes and a high spheronizer speed. There was no relevant influence of the investigated process parameters on the size distribution, mechanical stability, and drug release. The poorly soluble drugs, phenacetin and chloramphenicol, resulted in pellets with adequate shape, size, and tensile strength and a fast drug release. The salts of dimenhydrinate and lidocaine affected pellet shape, mechanical stability, and the drug release properties using an aqueous solution of pH 3 as a granulation liquid. In the case of dimenhydrinate, this was attributed to the ionic interactions with κ-carrageenan, resulting in a stable matrix during dissolution that did not disintegrate. The effect of lidocaine is comparable to the effect of sodium ions, which suppress the gelling of carrageenan, resulting in pellets with fast disintegration and drug release characteristics. The pellet properties are affected by the process parameters and the active pharmaceutical ingredient used
    corecore