13 research outputs found

    HPV prevalence and genetic predisposition to cervical cancer in Saudi Arabia

    Get PDF
    BACKGROUND: Cervical cancer incidence is low in Saudi Arabian women, suggesting low prevalence to HPV infection due to environmental, cultural and genetic differences. Therefore, we investigated HPV prevalence and genotype distribution in cervical cancer as well as the association with 9 genetic single nucleotide polymorphisms (SNPs): CDKN1A (p21) C31A, TP53 C72G, ATM G1853A, HDM2 promoter T309G, HDM2 A110G, LIG4 A591G, XRCC1 G399A, XRCC3 C241T and TGFβ1 T10C, presumed to predispose to cancer. METHODS: One hundred cervical cancer patients (90 squamous cell carcinoma and 10 adenocarcinoma) and 100 age/sex-matched controls were enrolled. SNPs were genotyped by direct sequencing and HPV was detected and typed in tumors using the HPV Linear Array Test. RESULTS: Eighty-two cases (82%) were positive for HPV sequences. Seven HPV genotypes were present as single infections (16, 18, 31, 45, 56, 59, 73) and five double infections (16/18, 16/39, 16/70, 35/52, 45/59) were detected. Most common genotypes were HPV-16 (71%), 31 (7%), and 18, 45, 73 (4% each). Only XRCC1 SNP was significantly associated with cervical cancer (P=0.02, OD=1.69; 95% CI= 1.06–2.66). However, nested analysis revealed a preponderance of HPV-positivity in patients harboring the presumed risk allele TP53 G (P=0.06). Both XRCC1 and TP53 SNPs tended to deviate from Hardy-Weinberg equilibrium (HWE; P=0.03-0.07). CONCLUSIONS: HPV prevalence (82%) in cervical cancer is at the lower range of the worldwide estimation (85 - 99%). While XRCC1 G399A was significantly associated with cervical cancer, TP53 G72C showed borderline association only in HPV-positive patients. Deviation from HWE in HPV-positive patients indicates co-selection, hence implicating the combination of HPV and SNPs in cancer predisposition. Thus, SNPs could be more relevant biomarkers of susceptibility to cervical cancer when associated with HPV infection

    Combining CDKN1A gene expression and genome-wide SNPs in a twin cohort to gain insight into the heritability of individual radiosensitivity

    Get PDF
    Individual variability in response to radiation exposure is recognised and has often been reported as important in treatment planning. Despite many efforts to identify biomarkers allowing the identification of radiation sensitive patients, it is not yet possible to distinguish them with certainty before the beginning of the radiotherapy treatment. A comprehensive analysis of genome-wide single-nucleotide polymorphisms (SNPs) and a transcriptional response to ionising radiation exposure in twins have the potential to identify such an individual. In the present work, we investigated SNP profile and CDKN1A gene expression in blood T lymphocytes from 130 healthy Caucasians with a complex level of individual kinship (unrelated, mono- or dizygotic twins). It was found that genetic variation accounts for 66% (95% CI 37-82%) of CDKN1A transcriptional response to radiation exposure. We developed a novel integrative multi-kinship strategy allowing investigating the role of genome-wide polymorphisms in transcriptomic radiation response, and it revealed that rs205543 (ETV6 gene), rs2287505 and rs1263612 (KLF7 gene) are significantly associated with CDKN1A expression level. The functional analysis revealed that rs6974232 (RPA3 gene), involved in mismatch repair (p value = 9.68e-04) as well as in RNA repair (p value = 1.4e-03) might have an important role in that process. Two missense polymorphisms with possible deleterious effect in humans were identified: rs1133833 (AKIP1 gene) and rs17362588 (CCDC141 gene). In summary, the data presented here support the validity of this novel integrative data analysis strategy to provide insights into the identification of SNPs potentially influencing radiation sensitivity. Further investigations in radiation response research at the genomic level should be therefore continued to confirm these findings.Peer reviewe

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Retraction Note: SNPs in genes implicated in radiation response are associated with radiotoxicity and evoke roles as predictive and prognostic biomarkers

    No full text
    The authors are retracting this article [1] because the data have already been published in [2] making this a redundant publication. Ghazi Alsbeih, Najla Al-Harbi, Khaled Al-Hadyan, Mohamed Shoukri and Nasser Al-Rajhi agree with this retraction. Medhat El-Sebaie did not respond to our correspondence

    Growth, Yield, and Bunch Quality of “Superior Seedless” Vines Grown on Different Rootstocks Change in Response to Salt Stress

    No full text
    The growth and quality of vines are negatively affected by soil salinity if enough salts accumulate in the root zone. As part of the current study, we estimated the remediating effects of rootstocks under salinity. For this reason, “superior seedless” vines were grafted onto three different rootstocks, such as SO4, 1103 Paulson, and own-root (“superior seedless” with their own-root). The experiment was conducted in the 2019 and 2020 seasons. This study examines the effects of different rootstocks on vine growth, yield, and quality using “superior seedless” vines grown in sandy soil with salinity. Four stages of berry development were examined (flowering, fruit set, veraison, and harvest time). At harvest, yield characteristics (clusters per vine and cluster weight) were also assessed. Each parameter of the growth season was influenced separately. The K+ and Na+ ratios were also significantly increased, as were the salinity symptoms index and bunch yield per vine and quality. Rootstock 1103 Paulson improved photosynthetic pigments, K+ accumulation, Na+ uptake, and cell membrane damage in “superior seedless” vines compared to other rootstocks, according to the study results. As determined in the arid regions of northwestern Egypt, the 1103 Paulson can mitigate salinity issues when planting “superior seedless” vines on sandy soil
    corecore